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Abstract: We study the mechanical properties of a broad class of
multimode and polarization light patterns, resulting from the interference
and superposition of waves in helical modes. General local and global
properties of energy and angular momentum (AM) are identified, in order to
define the conditions to optimize the AM with increasing beam complexity.
We show the possibility to engineer independently the local densities of
optical AM and energy, opening the possibility of an experimental demon-
stration of their respective effects in light-matter interaction. Multimode
Laguerre-Gaussian beams also allows us to tailor the local spin AM through
the Gouy phase.
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1. Introduction

Spin and orbital angular momenta of light have been observed in many experiments via the
transfer of these mechanical quantities to matter. The results have been in agreement with the-
oretical predictions for easily accessible beams characterized by circular polarization and heli-
cal phase profiles, including Laguerre-Gaussian (LG) and Bessel beams [1, 2, 3, 4]. Recently,
more complex beams have been subject of investigations because of their applications in imag-
ing [5, 6], tweezers [7, 8, 9], atomic trapping [10], microfluidic [11], and quantum informa-
tion [12]. These multimode beams and polarization patterns are composed by different helical
components with azimuthal phase dependence exp(i�φ) and can be generated with spatial light
modulators, or other linear optical elements [4, 6, 13, 14, 15, 16, 17]. Moreover, these beams
can also occur as the result of the nonlinear processes of wave mixing [4, 18], as the result
of spontaneous pattern formation [19] or in specially engineered lasers and photonic crystals
[20, 21, 22]. A device to measure the spectrum of helical components of generic multimode
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beams has been proposed in [23].
An interesting way to increase the complexity of Gaussian light beams is to consider the

case of multimode beams, resulting from the inter f erence of an increasing number of modes.
Some recent work reports on the effects of interfering LG modes in the context of singular
optics looking, for example, at the topology of the singularities along the propagation beam
direction [24] and in relation with optical manipulation [8, 9]. In particular, Ref. [8] shows the
possibility to concentrate opposite orbital AM in different circles in the transverse profile of the
beam, while Ref. [9] reports on the tuning of the orbital AM by the interference of modes with
opposite helicity and different intensities. Both references consider the interference of vortex
beams with the same (linear) polarization.

In addition to interference, it is also interesting to explore the role of the vectorial character
of the electromagnetic field through the analysis of the superposition of orthogonal linearly
polarized beams, in the context of AM. With the proper choice of relative phases, interference
can be used to obtain LG modes carrying orbital AM starting from two orthogonal Hermite-
Gaussian beams, with vanishing orbital AM [2], while superposition of identical beams that are
linearly polarized in orthogonal directions, with vanishing spin AM, gives rise to elliptically
polarized light carrying a non-vanishing spin AM and also to radially and azimuthally polarized
beams [6].

There is clearly a rapidly increasing number of experiments and theoretical proposals dealing
with beams of increasing complexity, both in terms of number of spatial modes and polariza-
tion states. Our interest lies in the mechanical properties of these beams, focusing on local
and global features of both scalar and vectorial beams obtained, respectively, by interference
and superposition (see Eqs. 10, 11). Multimode beams have optical AM features that are pro-
foundly different from those of orbital AM eigenmodes with their helical phase profiles and uni-
form polarization states. The study of local properties, such as the densities of linear and AM
[25, 26, 27], is fundamental for experiments accessing only portions of the beam like tweezers
and atoms or ion trapping, as well as any aperture effects introduced by optical elements. We
show that increasing the complexity of light beams opens up the possibility to engineer, inde-
pendently, the local orbital AM and energy densities and we propose an experiment to identify
the independent roles of these in optical trapping. A simple way to obtain circles with opposite
spin AM is also shown just by exploiting the Gouy phase. We also study global properties of a
general class of beams, including the average energy and AM, and we identify the conditions
to optimize the amount of AM per photon with increasing beam complexity. In particular, we
consider whether it is more efficient to interfere or superpose beams in order to generate orbital
and spin AM.

2. Linear and angular momenta and energy

Much of the literature on the mechanical properties of light treats beams carrying a uniform
polarization. In such cases a scalar wave theory suffices to describe the light and its mechanical
properties. It is important to recall, however, the expressions for the linear and AM in the most
general case, as a function of arbitrary field components E. The review in this section aims to
point out the principal effects arising when multimode polarization patterns are considered. We
consider only monocromatic beams with electric field

e(x,t) =
1
2
[E(x)eikz−iωt + c.c] (1)

where E = (Ex,Ey,Ez) is the complex amplitude, ω the frequency and k = ω/c. We work
throughout within the limit of paraxial propagation. The transversality constraint on the elec-
tromagnetic field, ∇ · e = 0, fixes the field component in the propagation direction, E z, as a
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function of Ex and Ey. Therefore the mechanical properties of paraxial waves can be expressed
as a function only of the transverse field E⊥ = (Ex,Ey). The linear momentum density in the
direction of propagation is

pz(x) =
ε0

2c
(|Ex(x)|2 + |Ey(x)|2), (2)

where, as usual, rapidly oscillating terms are removed by temporal averaging over an optical
cycle. We define (spatially) averaged quantities as the integral of the densities over any trans-
verse plane (x,y). The importance of these quantities follows from their immediate relation
with fluxes in the paraxial limit [28]. In particular, for paraxial light beams, the average linear
momentum has its largest component in the propagation direction (Pz =

∫
dxdypz � Px,y). The

flux of linear momentum is naturally associated with the energy by Poynting’s theorem, which
leads to the expression of the time averaged energy per unit length

W =
ε0

2

∫

dxdy(|Ex|2 + |Ey|2). (3)

The transverse linear momentum density components p⊥ = (px, py) are

px(x) =
iε0

4ω
[(Ej∂xE

∗
j )− ∂y(E∗

x Ey)− c.c.] (4)

py(x) =
iε0

4ω
[(Ej∂yE

∗
j )+ ∂x(E∗

x Ey)− c.c.],

where we adopt the Einstein summation convention and j = x,y. Even if the average total
transverse momentum P⊥ is negligible with respect to Pz, the local value of the density p⊥ still
has important effects being at the origin of optical AM [29].

Surprisingly Eq. (4) vanishes identically for purely real (or imaginary) vectors E ⊥ suggesting
that no transverse momentum p⊥ can be exerted on the focal plane of a fundamental Gaussian
mode, in apparent contradiction with the well-known property of Gaussian light beams to move
small objects towards the beam axis. The consistency of Eq. (4) is ensured, however, by the
paraxial evolution causing any field purely real in a plane (for instance z = 0) to become com-
plex on propagation. Therefore the transverse momentum p⊥ would not vanish over an interval
|z| < Δz, with Δz being the thickness of the trapped object.

The average total transverse momentum is

P⊥ = −
∫

dxdy(ε0/2ω)Im(E j∇⊥E∗
j ), (5)

with “Im” denoting the imaginary part, and has the form of an “expectation value” of the linear
momentum, in the language of the analogy between paraxial optics and Schrödinger wave-
mechanics. It is interesting to compare the transverse momentum of uniformly polarized beams
with polarization patterns for vector beams. Uniformly polarized paraxial beams have the form
E⊥(x) = (α x̂+β ŷ)u(x), where α and β are complex constants. These beams have a transverse
momentum density −(ε0/2ω)Im(u∇⊥u∗) that is completely independent of the polarization
state of the beam. On the other hand, in the presence of polarization patterns, the linearly polar-
ized components Ex,y contribute differently to the linear momentum. As a particular example, a
field with vanishing average momentum P⊥ can be obtained by superposing two orthogonally
polarized waves with momenta pointing in opposite directions. This is a first example illustrat-
ing how the vectorial character of electromagnetic fields can lead to novel capabilities in optical
manipulation.

#87436 - $15.00 USD Received 12 Sep 2007; revised 9 Oct 2007; accepted 9 Oct 2007; published 2 Nov 2007

(C) 2007 OSA 12 November 2007 / Vol. 15, No. 23 / OPTICS EXPRESS  15217



Fig. 1. (a) Intensity distribution of the u20(x,y,0) Laguerre-Gaussian mode. The orbital AM
density (b) has the same profile of the intensity, the only difference being a scaling factor
given by the helicity �. If two orthogonally polarized beams in the same mode but with π/2
dephasing are superposed a circularly polarized wave is obtained. The spin of this wave
for u20 is represented in (c) and differs by the intensity distribution only by a scaling given
by the degree of polarization. In this case σ = 1. In order to compare with the following
pictures regions of the beam in which the intensity is above 80% of its maximum value are
highlighted with dashed lines in (b-c).

Comparison of the density of transverse momentum Eq. (4) and the integrand in Eq. (5)
reveals a term that does not contribute to the integrated total momentum but is, nevertheless,
locally non-vanishing. This vector,

ε0/2ω(∂yσz(x),−∂xσz(x)), (6)

is proportional to the transverse components of the curl of the Stokes parameter σ z =−i(E∗
x Ey−

c.c.) (that is the local difference between the left and right circularly polarized intensities) [30],
taken in the limit of slow variation of the field envelope along the propagating direction z.
Because of its derivative form, this term does not contribute to the average linear momentum
P⊥ for any physical beam and it has also been shown that it does not produce directly any
mechanical effect [26]. Still, this derivative term is extremely important because it leads to the
spin component of optical AM.

The density of AM is naturally defined from the linear one as j = x×p and we find the total
AM density in the propagation direction in the form

jz(x) =
iε0

4ω
[Ej∂φ E∗

j +2E∗
y Ex + ∂x(xE∗

x Ey)+ ∂y(yE∗
x Ey)− c.c.]. (7)

We can readily distinguish different terms contributing to the total AM [4], namely an orbital
component

�z =
ε0

2ω
Im(E∗

x ∂φ Ex +E∗
y ∂φ Ey), (8)

and a spin component

sz =
ε0

ω
Im(E∗

x Ey). (9)

In this case, as for the linear momentum, there is a non-vanishing derivative term in the total
density that does not contribute to the average AM and does not have mechanical effects, as
discussed in Ref. [26]. We stress that it is necessary (but not sufficient) to have a field E⊥ with
a local circular polarization in some region to obtain a non-vanishing spin AM. Novel fields
characterized by azimuthal and radial polarizations therefore do not carry any spin AM even if
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in general they have a non-vanishing orbital AM. It was already noticed in seminal papers about
optical AM that linearly polarized beams in helical (LG) modes have a density of orbital AM (8)
that is locally proportional to the energy density [2, 4]. The same is true for the spin AM density
if boundary terms are neglected (see Fig. 1). For more complex beams, however, the local
mechanical properties can be tailored independently with important consequences in optical
manipulation. In particular, for multimode beams, neither the spin nor the orbital AM densities
are proportional to the local energy density. It follows also that global properties of these beams
are different from the single mode case. In the following, we will consider the average L z =∫

dxdy�z resulting from the sum of the orbital AM carried separately by the linearly polarized
components Ex and Ey and the spin given the spatially averaged Stokes parameter σ z(x). We
discuss multimode beams comparing beams obtained either by interference or by superposition.

2.1. Interference and superposition of optical beams

At the heart of wave physics is the phenomenon of interference, for which some properties,
like the energy, carried by the component waves exhibit local maxima and minima that are
not present in the constituent interfering waves. Because of the vectorial character of the elec-
tromagnetic field, however, two waves can be combined in a field in such a way that their
energy densities add. This occurs when the superposed fields have orthogonal polarizations.
In the following we consider the main differences between the mechanical properties in the
superposition of two orthogonal linearly polarized beams

Es
⊥(x) = (U(x),V (x)) (10)

and the linearly polarized field

Ei
⊥(x) = (U(x)+V(x),0), (11)

resulting from the interference of the same fields U and V , but now with parallel polarization.
Clearly the interference field (11) does not carry any spin AM but does allow us to include in
our analysis the properties of multimode fields, from the sum of different helical modes. On
the other hand, the superposition field (10) allows us to identify the relations between different
mechanical properties (energies and momenta) of polarization patterns.

The polarization pattern (10) carries a total average AM

Js
z =

iε0

4ω

∫

dxdy[U∂φU∗ +V∂φV ∗ +2V∗U − c.c.], (12)

which includes both orbital and spin components, while the interference linearly polarized field
Ei carries an (orbital) AM

Ji
z =

iε0

4ω

∫
dxdy[(U +V)∂φ (U +V)∗ − c.c.]. (13)

Two main differences can be inferred by the comparison of the AM between the interference
and superposition fields. The first one is that the local difference in the phases of U and V can
give rise to a resulting spin in the polarization pattern E s, and that this occurs despite of the zero
spin of the component beams. We stress that in the single mode case [2] the spin AM arises
due to a spatially-uniform phase difference between the component beams while for generic
Ex and Ey the respective spatial profiles and mode components also play a key role. Locally,
non-vanishing spin AM can be induced without global rephasing of the beams (i.e. without
using phase plates) by engineering the spatial phase profiles of linearly polarized fields, by use
of spatial light modulators, so that the local phases of the beams U and V are mapped into a
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polarization pattern. If helical modes are considered this gives rise, in a sense, to a transfer of
orbital AM into spin AM. It follows that, in general, the local spin and orbital AM densities are
two intrinsically correlated properties that cannot be engineered independently in finite regions
across the beam profile. In order to produce a polarization pattern it is necessary to introduce a
relative phase between the linearly polarized components of the field, but this variation will in
general produce a locally non-vanishing orbital AM.

The resulting orbital AM also depends on whether we interfere or superpose the two fields.
Indeed, the second main observation drawn from Eqs. (12) and (13) is the distinctive property of
the superposition of orthogonally polarized waves, allowing not only to add their input energies
but also to add their orbital AM. On the other hand, as for the energy, the AM obtained by
the interference of two beams is not the sum of their AM. The difference between the orbital
angular momenta of Ei and Es is

Li
z −Ls

z =
iε0

4ω

∫
dxdy[U∂φV ∗ +V∂φU∗ − c.c.]. (14)

A trivial way to increase optical AM is to uniformly increase the intensity amplifying E s,i.
High powers, however, are often undesirable and, moreover, there are more interesting possibil-
ities. In order to study the efficiency in producing AM, it is meaningful, therefore, to consider
the AM per unit of energy (AMPE) or per photon, these quantities being equivalent apart from a
factor h̄ω . This scaling also allows us to distinguish any increase of AM from that arising from
the difference in energy for interference and superpositions. For example, in the trivial case
V = exp(iθ )U (with θ real constant) the difference (14) is non-vanishing, but this is a simple
“side effect” of constructive (θ = 0) or destructive (θ = π) interference. The orbital AMPE is
the same in this case (and independent of θ ) in either superposition or interference.

A general and interesting question is whether the interference or the superposition of waves
carrying AM produces a beam with the greater AMPE. We start by considering orbital AM,
recalling that the spin component is present only for superposition. The natural basis to study
AM in paraxial beams is given by LG modes u p� [4, 31]:

U(x) = C∑
p,�

ap�up�(x), V (x) = C∑
p,�

bp�up�(x), (15)

where C is a real factor with the dimensions of electric field. We can choose the mode am-
plitudes such that ∑p,� |ap�|2 = ∑p,� |bp�|2 = 1 so that C fixes the total energy. We find that
the efficiency in producing larger orbital AM is optimized either by interference or superposi-
tion depending on the spatial spectral details of the component beams. For example, opposite
signs of � can cancel in the superposition case, while in the case of interference everything is
complicated by the possibility that the relative phases of the a and b amplitudes play a roll in
determining the total contribution to the AM of each LG mode. This can be seen clearly by
considering the orbital AMPE in interference and superposition

Li
z

W i =
∑p,� |ap� +bp�|2�
ω ∑p,� |ap� +bp�|2 ,

Ls
z

W s =
∑p,�(|ap�|2 + |bp�|2)�
ω ∑p,� |ap�|2 + |bp�|2 . (16)

The vectorial character of the electromagnetic field makes it possible to add not only the ener-
gies but also the orbital AM through superposition, while orbital AM and energy can be affected
either by constructive or destructive interference depending the signs of the factors Re(a p�b∗p�).
It follows that the largest AMPE is obtained by superposing the fields rather than by interfering
them when

∑
p,�

Re(ap�b
∗
p�)� <

1
2 ∑

p,�

Re(ap�b
∗
p�)∑

p,�

(|ap�|2 + |bp�|2)�. (17)
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Equation (17) provides a general criterion with which to establish whether, given two input
beams with the same energy but different orbital AM spectra, there is more orbital AMPE in
their interference or in their superposition. Naturally the spin AM needs to be included in order
to obtain the total AMPE of superposed beams. The averaged total spin AMPE, in terms of the
component-mode amplitudes is

Ss
z

W s = − 1
ω ∑

p,�

Im(ap�b
∗
p�). (18)

We note that only common mode components in the fields U and V contribute to the average
total spin AM.

3. Examples

In this section we illustrate, through some examples, both the global and local properties of spin
and orbital AM for both the superposition and interference cases as the degree of complexity
of the beams is increased.

3.1. Interfering and superposing single Laguerre-Gaussian modes

Let us consider two LG modes

U(x) = Cup�1(x), V (x) = Cup�2(x) (19)

and consider superposition fields, as in (10), and interference, as in (11).

3.1.1. Modes with different helicities �1 �= �2

The interference of beams with opposite charges �1 = −�2 and different energies was consid-
ered in Ref. [9] where the possibility of using the imbalance between the modes to tune the
orbital AM on the intense circle was established. A complementary approach was adopted in
Ref. [8] to demonstrate the possibility of having rings with opposite orbital AM when � 1 and �2

have opposite signs and a large difference in the absolute value. Here we consider the case of
composing beams with equal energies, different helical indexes (� 1 �= �2) (i) focusing on general
local and global AM of these beams and (ii) generalizing the analysis by including the vectorial
degree of freedom of the electromagnetic field. The superposition of orthogonally polarized LG
beams allows us to tailor polarization patterns carrying spin AM.

It follows from (17), or from the orthogonality of the modes with � 1 �= �2, that the average
orbital AM of the superimposed beams (as well as the energy) is the same as that obtained by
interference. In particular

W i = W s = ε0C
2, Li

z = Ls
z =

ε0C2

2ω
(�1 + �2). (20)

We note that even if the details of the pattern of both the superimposed and interfering beams
depend on the distance z from the beam waist, the average AM are constant at different planes
(independent on z). It follows from the orthogonality of the modes, U and V , that the average
total spin AM generated by superposition is zero, (Eq. (18)). Finally, modes with different he-
licities have the same average AM both in superposition and interference, and this is also true
of the AM per photon.

Even if in this case the global (average) mechanical properties in interference and super-
position are the same, important differences appear in their local properties. The orbital AM
resulting from constructive interference (a,e) and superposition (b,f) are compared in Fig. 2 and
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Fig. 2. AM densities obtained by interfering (a,e) constructively and by superposing (b-d,f-
h) two p = 0 Laguerre-Gaussian modes with �1 = 3, �2 = 2 (a-d) and �1 = 3, �2 = 0 (f-h).
Orbital AM (a,b,e,f), spin (c,g) and total(d,h) AM are represented and compared with the
intensity highlighted regions (see Fig. 1).

Fig. 3. AM densities as in Fig. 2 in the case of �1 = 7, �2 = −1, with p1 = 0 = p2.

Fig. 3 for different LG beams. The main difference is that the azimuthal symmetry in the orbital
AM distribution is lost in the interference pattern. In particular, given (19), it follows that the
orbital AM density for the superposition field is

�s
z(x) =

ε0

2ω
[�1|U(x)|2 + �2|V (x)|2], (21)

which clearly has azimuthal symmetry, while for the interference field it is

�i
z(x) = �s

z(x)+
(�1 + �2)ε0

2ω
Re(U(x)V ∗(x)), (22)

which exhibits an azimuthal modulation of |�1 − �2| positive (or negative) lobes, as illustrated
in Fig. 2(a) (3−2 = 1 lobe), Fig. 2(e) (3 lobes) and Fig. 3(a) (7+1 = 8 lobes).

The modulation effect due to interference is actually also present in the power distribution,
with the same azimuthal period 2π/|�1 − �2|. The important difference is in their respective
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radial distributions. This gives rise to the interesting observation that, in general, the regions
of maximum AM density, either of spin or orbital origin, are not the regions with maximum
intensity (energy density). This is evident in Figs. 2e and 3a: The energy is concentrated in an
inner dashed region and the orbital AM in an external one. Similarly, for the superposition of
waves (19), the ring of maximum energy intensity in Fig. 2(f) as well as in Fig. 3(b) falls in
a region of relatively small orbital AM. A comparison of the radial cross sections is given in
Fig. 4(a).

Following the analysis presented in Ref. [26] the angular velocity of an absorbing (or bire-
fringent) object trapped by a beam carrying orbital (or spin) AM depends on the AM flux
through the region occupied by the object itself. For paraxial beams this reduces to the average
of the variation of the AM density introduced by the absorbing or birefringent object. The main
point is that, if the trapping beam is a single LG mode, the angular velocity is proportional to
the local absorbed energy, because this is equivalent to the AM density apart from a constant
[26]. For more complex trapping beams, however, energy and AM can be tailored to be locally
very different. Therefore the fastest rotation of an absorbing particle can appear even in regions
of relative darkness of the beam. This separation between the regions where energy and AM are
respectively concentrated offers the possibility to clearly distinguish the respective mechanical
effects. In order to observe rotation of particles in dark regions of the transverse beam profile it
is possible to use hollow spheres or any object with refractive index lower than the surrounding
liquid medium [32]. In the following, we consider an alternative strategy, where for symmetry
reasons a particle is trapped on the beam axis of a centrally symmetric beam.

We propose an experiment to measure the angular velocity of a trapped object with circular
or ring shape. The interference and superposition fields could be used to trap the object and
a measurement made of the variation of the velocity by changing the relative radius of the
beam and of the object, for instance by progressive focusing of the beam. The variation of
the velocity will be proportional to the integral of the AM density over the object area and
clearly distinguishable from the average energy. In Fig. 4(b) we illustrate the case of a circular
purely absorbing object trapped by the field resulting from the superposition of two beams with
same energies and different helicities. The average energy in a circular area always increases
monotonically with the radius R. On the other hand, the orbital AM can show oscillations from
negative to positive values if the composing beams have helicities with different signs. On
focusing the beam, the angular velocity of the trapped object is predicted to change direction
following the dashed line curve in Fig. 4(b). The asymptotic values for large R can be compared
with Eqs. (20). We note that a naı̈ve picture of the angular velocity in terms of the transfer
of some average number of units of orbital AM (Jz) per photon would translate in a wrong
prediction of increasing angular velocity in a fixed direction.

We consider now the spin AM when the orthogonal beams (19) are superposed. Even if the
average spin AM is vanishing, we have seen that the local value of the Stokes parameter σ z(x) is
dictated by the relative phases of the superimposed beams (E x and Ey). The orthogonality of the
spatial modes, does not prevent the possibility of finding a polarization pattern with large local
spin AM. In particular, regions of left circular polarization are balanced by the ones with right
circular polarization, as illustrated in Figs. 2c and g, and Fig. 3(c). The |� 1− �2| lobes [33] with
left and right circular polarization are separated by regions of vanishing spin, or C-contours
[34], while the energy is azimuthally symmetric. We conclude that the total AM density, and
its spin and orbital components, can be concentrated near to regions of darkness in the beam.
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Fig. 4. a) Radial energy density (continuous line) and orbital AM density (dashed line)
obtained superposing two beams with �1 = 7, �2 = −1 (see Fig. 3(b)). b) Average energy
(continuous line) and orbital AM (dashed line) obtained by integral on a circular area of
radius R in units of ε0C2 and ε0C2/ω , respectively.

3.1.2. Modes with same helicities

In order to illustrate the specific effects encoded in the radial index, let us consider LG com-
posing beams with the same helicity (�), but different radial indexes p 1 �= p2:

U(x) = Cup1�(x), V (x) = Cup2�(x). (23)

Due to the orthogonality of the modes we find again that the average AM as well as the energy
are the same in interference and superposition, while the respective densities will in general be
different. In particular, at the focal plane the orbital AM does not show any azimuthal modula-
tion, even in the case of interference, and the spin density is uniform. However, the details of
the pattern of both the superimposed and interfering beams depend on the propagation distance
z, maintaining constant average values at different planes. Here we focus on the local spin gen-
eration induced by the respective Gouy phases exp[−i(2p j + |�|+1) tan−1(z/zR)] ( j = 1,2) of
superposed beams with different radial indexes. The relative Gouy phase introduces local po-
larization gradients, and hence non-vanishing spin AM density, in the form of opposite circular
polarizations over different circles, as shown in Fig. 5. In the example, there is no spin at the
focal plane, as the relative phase of the beams is vanishing everywhere, while for z �= 0 we see
two circles of opposite spin (see the radial plot of the spin oscillating from positive to nega-
tive values in the left panel of Fig. 5). The Gouy phase is an odd function of z and so the spin
density before and after the focal plane takes opposite values (compare panels for z = −0.5z R

and +0.5zR in Fig. 5). Trapping bire f ringent particles near to a liquid surface and moving the
focal plane away from the liquid surface should make it possible to show, experimentally, the
effects of the Gouy phase and of the variation of the polarization pattern in different planes by
observing the variation of the angular velocities of trapped objects. An interesting arrangement,
fully exploiting the possibility to change rotation directions by moving the beam focal plane,
would be a set-up with two concentric circular gears. Such an arrangement might be useful both
for micromachining and microfluidic applications.

Finally if U and V are in the same spatial mode (�1 = �2, p1 = p2) we have a single mode
beam. Then, the orbital AMPE in superposition and interference is the same in spite of the
fact that their energies and orbital AM are generally different. In other words, in this trivial
case energy and AM interfere in the same way. No polarization patterns (local polarization
gradients) appear in this case and the spin of the wave depends only on the relative (global)
phases of the superimposed waves (the local and global properties of the spin are the same).
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Fig. 5. Spin of the superposition of two orthogonal linearly polarized waves with same
helicity � = 2 and radial indexes p1 = 0, p2 = 1 at different planes along one Rayleigh
range (zR), for z =−0.5zR,0,+0.5zR,+zR. In the first panel the radial profile is represented
to show the local sign of the spin density. The Gouy phase introduces local polarization
gradients out of the focal plane.

3.2. Interfering and superposing multimode beams

LG modes are the ‘simplest’ beams carrying orbital AM. In the previous section we have stud-
ied the case of interference and superposition of two LG modes U and V . The minimum degree
of complexity that can be added to this is by considering the patterns generated by superposing
two beams not in single mode but still containing, over all, only two LG modes (same number
of spectral components than in previous section):

U(x) = Ceiθ u0�1(x), V (x) = C(u0�1(x)+u0�2(x))/
√

2. (24)

Note that (i) U and V have the same average energy and (ii) they are clearly not orthogonal, as
V results from the (constructive) interference of u 0�1 and another orthogonal mode (�1 �= �2).
This enables us to study the effects of both parallel and orthogonal mode components. The
phase θ can be varied to have constructive or destructive interference between U and V . For
−π/2 < θ < π/2 the interference of the parallel components in U and V is constructive leading

to a larger energy than in the superposition: W i
z = W s

z

[
1+ cosθ√

2

]
. The average orbital AM is

Li
z =

C2ε0

2ω

[(
3
2

+
√

2cosθ
)

�1 +
1
2
�2

]

(25)

Ls
z =

C2ε0

2ω

[
3
2
�1 +

1
2
�2

]

, (26)

and it is easily seen that if �1 is positive then Li
z > Ls

z, independently on the value of �2. If �1

is negative, on the other hand and in spite of the constructive interference, the orbital AM is
smaller in the interference pattern than in the superposition one. The same result is obtained
for destructive interference (π/2 < θ < 3/2π) and negative � 1. Assuming for simplicity that
�1, �2 > 0, we conclude that interfering constructively the beams (24) gives more average orbital
angular momentum than superposing them. Surprisingly, even if there is more orbital AM in
the interference case, this does not always mean that there is more orbital AMPE. In particular,
it is possible to obtain more AMPE in the superposition than in the constructive interference
case depending on the relative values of �1 and �2. In general we find that (for constructive
interference |θ | < π/2)

Li
z

W i <
Ls

z

W s for �1 < �2. (27)

For destructive interference the same result holds but for � 1 > �2. Remember that in the case of
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Fig. 6. Regions (shaded) in which there is more total AM (left) and more total AMPE
(right) in superposition than in interference, as function of the angle θ and �1, for a fixed
�2 = 2.

orthogonal beams (previous section) the orbital AM as well as the orbital AM per photon were
the same in either interference or superposition. The study of the interference and superposition
of the beams (24), with a low degree of spectral complexity (only two modes), shows that even
if the average orbital AM is larger for constructively interfering the beams than for superposing
them (cosθ > 0, �1 > 0), the superposition can still be more efficient in providing the largest
orbital AMPE (if �1 < �2).

The beam obtained by superposing the two orthogonally polarized waves (24) also carries an
average spin angular momentum. The main point is that only the parallel components (in the
orbital AM states) of U and V can contribute to the spin, as discussed above (Eq. 18). From
Eqs. (24) it follows that the average spin AM is

Ss
z = − ε0C2

√
2ω

sinθ . (28)

Note that Ss
z/W s = −sinθ/

√
2ω and for a relative phase of θ = −π/2, the spin per photon

would be h̄/
√

2. This value is less than expected (h̄ per photon for circularly polarized light)
because the same LG modes for Ex and Ey have different amplitudes. The comparison between
the interference and superposition beams, including also the spin, is obtained by comparison of
the total AM

Js
z =

C2ε0

2ω

[
3
2
�1 +

1
2
�2 −

√
2sinθ

]

(29)

with Eq. 25 (Ji
z = Li

z). It follows that Js
z > Ji

z if

−sinθ > �1 cosθ (30)

These simple relations provide the conditions to maximize the resulting AM (and AMPE) chos-
ing between superposition and interference, as shown in Fig. 6.

4. Conclusion

The properties of angular momenta and energy of multimode light beams have been discussed,
illustrating their main differences with the case of single LG modes. The latter are known to
have energy and AM related by constant proportionality factors, both locally and globally. On
the other hand, the interference of LG modes allows us to tailor the mechanical properties
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of these beams into different density profiles. Superposition of orthogonal linearly polarized
beams was also discussed and we showed how the vectorial character of the electromagnetic
field makes it possible to tune independently the x and y components of the linear momentum
introducing also locally varying spin (polarization patterns). Unlike interference, superposition
allows us to add both the energy and orbital AM of orthogonally polarized field components,
without introducing any azimuthal modulation.

The ability to engineer independently the local density of orbital AM and energy opens up
the possibility to distinguish the respective effects of light intensity and optical AM in light-
matter interactions. In particular, the AM density can be maximum in regions of relatively low
intensity, where hollow particles would be naturally trapped. This may have important implica-
tions in the context of optical trapping including, for example, the possibility of rotating without
burning. Similarly, if small absorbers are used to map the transverse profile of a generic beam
then the faster rotations will not necessarily be observed in the regions of maximum intensity.
We proposed an experiment to clarify the distinctive role of energy and AM by measuring the
angular velocity of an absorbing object, trapped by a multimode beam as it is focused. The
generic picture of mechanical effects in terms of the absorption of photons carrying an average
orbital AM is not appropriate for mutlimode beams and the local AM distribution needs to be
evaluated. We also described a simple way to create polarization patterns, with azimuthal sym-
metry, provided by the Gouy phase. Superposing LG modes with different radial indexes but
the same helicity, it is possible to create patterns with rings of opposite spin out of the focal
plane, even if the average spin AM is zero.

The global AM and AMPE of multimode beams were also discussed. If the component beams
are orthogonal then the same average orbital AM and energies are found in interference and
superposition, while the average spin is always zero, independently of the relative phase. On
the other hand, the global properties can be changed even maintaining the same two composing
LG modes when increasing the beam complexity: given the fields (24) we found (i) different
average AM and energies for interference and superposition, (ii) with non-vanishing spin, and
(iii) we identified the conditions to have larger resulting AM and AMPE in superposition than
in interference depending on the phases and helicities of the component beams.
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