
This version is available at https://strathprints.strath.ac.uk/30851/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
A novel heterotrifunctional peptide-based cross-linking reagent for facile access to bioconjugates. Applications to peptide fluorescent labelling and immobilisation

Guillaume Clavé, Hervé Boutal, Antoine Hoang, François Perraut, Hervé Volland, Pierre-Yves Renard and Anthony Romieu

The authors thank Dr Oleg Melnyk (Institut de Biologie de Lille, UMR CNRS 8161, Universités de Lille 1 et 2, Institut Pasteur de Lille, IFR 142) for informing them that N-hydroxysuccinimide carbonates and carbamates have already been used as bioconjugate reagents, contrary to what is claimed in our manuscript (p. 3067).

Synthesis of biotinamidohexanol N-hydroxysuccinimide carbonate (Bx-O-NHS), biotinamidohexylamine N-hydroxysuccinimide carbamate (Bx-NH-NHS), 1-(2,4-dinitrophenyl)amidohexanol N-hydroxysuccinimide carbonate (DNP-O-NHS), 1-(2,4-dinitrophenyl)amidohexylamine N-hydroxysuccinimide carbamate (DNP-NH-NHS) and their application to protein modification have been published by Morpurgo et al. Thus, this latter publication should be taken into account in reference 13 (p. 3067) as follows: M. Morpurgo, E. A. Bayer and M. Wilchek, J. Biochem. Biophys. Methods, 1999, 38, 17.

The authors regret this unwitting omission.

A facile synthesis of pyrrolo-(di)-benzazocinones via an intramolecular N-acyliminium ion cyclisation

Frank D. King, Abil E. Aliev, Stephen Caddick, Derek A. Tocher and Denis Courtier-Murias

In Scheme 1, the structure of 3 should be:

![Structure of 3]

Synthesis of the originally proposed structures of elatenyne and an enyne from Laurencia majuscula

Helen M. Sheldrake, Craig Jamieson, Sofia I. Pascu and Jonathan W. Burton

The X-ray structure of the sulfone 38 was inadvertently shown with the incorrect absolute configuration in Fig. 9 in the original manuscript. The corrected Fig. 9 is shown below, along with corrected note 59. Additionally, the original CIF file for the structure of the sulfone 38 contained an error. The corrected CIF file has since been deposited at the CCDC (Deposit-698760-corrected).

59. Crystal structure determination: Crystallographic data of sulfone 38 was collected on the synchrotron radiation source at Station 9.8, Daresbury SRS, UK, on a Bruker SMART CCD diffractometer. The structures were solved by direct methods using the program SIR92 (ref. 65). The refinement (on F) and graphical calculations were performed using the CRYSTALS (ref. 66) program suite. Crystal data: C15H20O5S, M = 312.39, Z = 4, monoclinic, space group P21, a = 5.5615(17) Å, b = 27.699(8) Å, c = 10.094(3) Å, \(\beta = 105.644(6) \(^\circ\) \), \(V = 1497.4(8) \) Å\(^3\), \(T = 150 \) K, \(\mu = 0.235 \) mm\(^-1\). Of 10048 reflections measured, 6771 were independent (\(R_{int} = 0.028 \)). Final \(R = 0.0528 \) (5013 reflections with \(I > 2\sigma (I) \)) and \(wR = 0.1102 \). Crystallographic data (excluding structure factors) for this structure have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 698760-corrected. Copies of the data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif.
Fig. 9 X-Ray crystal structure of the anomeric sulfone 38 showing two molecules in the unit cell (50% probability ellipsoids).

†We are grateful to Dr Amber Thompson (University of Oxford) and Dr David Watkin (University of Oxford) for assistance in correcting this error.

Synthesis and use of isotope-labelled substrates for a mechanistic study on human α-methylacyl-CoA racemase 1A (AMACR; P504S)

Daniel J. Darley, Danica S. Butler, Samuel J. Prideaux, Thomas W. Thornton, Abigail D. Wilson, Timothy J. Woodman, Michael D. Threadgill and Matthew D. Lloyd

The authors regret the following error:

During the course of subsequent studies it has come to our attention that the enzyme kinetic parameters for substrates 10S and 10R were incorrectly reported. The correct parameters are as follows: $K_m = 1.2$ mM; $V_{max} = 77.5$ nmol min$^{-1}$ mg$^{-1}$; $k_{cat} = 6.09 \times 10^{-3}$ s$^{-1}$; $k_{cat}/K_m = 50.75$ s$^{-1}$ M$^{-1}$. For 10R: $K_m = 1.2$ mM; $V_{max} = 68.4$ nmol min$^{-1}$ mg$^{-1}$; $k_{cat} = 5.38 \times 10^{-3}$ s$^{-1}$; $k_{cat}/K_m = 44.80$ s$^{-1}$ M$^{-1}$.

This error is at the bottom of p. 545 and the top of p. 546.

Metal-catalysed halogen exchange reactions of aryl halides

Tom D. Sheppard

The author regrets the following errors:

Reference 31 should read:

Reference 40 should read:

Reference 60 should read:
Silver-catalysed Doyle–Kirmse reaction of allyl and propargyl sulfides

Paul W. Davies, Sébastien J.-C. Albrecht and Giulio Assanelli

The following report should be included in the introductory discussion of recent progress in silver-catalysed atom-transfer reactions:

A silver(I) tris(pyrazolyl)borate complex has been used with alkyldiazoacetates to effectively catalyse the formation of halonium ylides which then undergo sigmatropic rearrangement.

We thank Professor Carl Lovely for alerting us to this omission.

Hydrogen bond driven self-assembled C₂-symmetric chlorin syn dimers; unorthodox models for chlorophyll ‘special pairs’ in photosynthetic reaction centres

Taru Nikkonen, Raisa Haavikko and Juho Helaja

On page 2046, the authors made the following statement: ‘Katz and collaborators have perhaps most elegantly constructed a glycol linked chlorophyllide dimer,⁵ which self-assembles into a folded conformer by two hydrate bridges via oxygen metal coordination and carbonyl hydrogen bonding.’

The authors would like to further clarify that prior to this chlorophyllide dimer, the covalent linkage self-assembling chlorin dimer concept was originally introduced by S. G. Boxer and G. L. Closs with ethylene glycol linked pyrochlorophyllide a dimer, which is a similar chlorophyll derivate, apart from the fact that the compound lacks 13²(R) methoxycarbonyl groups.⁶

Diels–Alder reactions of 3,6-disubstituted 1,2,4,5-tetrazines. Synthesis and X-ray crystal structures of diazafluoranthe derivatives

Nelli Rahanyan, Anthony Linden, Kim K. Baldridge and Jay S. Siegel

The authors regret the following errors:

In Scheme 2 the structure of the intermediate (bottom left) is incorrect. A corrected scheme is shown below.
In Table 1, the entry for compound 12b should be deleted as 12b was not prepared; conditions for preparation of 12a' were mistakenly added as entry 12b. A corrected table is shown below.

Table 1 Diazabifenanthrene derivatives

<table>
<thead>
<tr>
<th>R_1</th>
<th>Entry (R_1 = H)</th>
<th>Conditions</th>
<th>Time</th>
<th>Yield %</th>
<th>Entry (R_1 = Me)</th>
<th>Conditions</th>
<th>Time</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>4a</td>
<td>CHCl_3, reflux</td>
<td>5 d</td>
<td>58%</td>
<td>4b</td>
<td>p-xylene, autoclave, 180 °C</td>
<td>3 d</td>
<td>27%</td>
</tr>
<tr>
<td></td>
<td>5a</td>
<td>chlorobenzene, reflux</td>
<td>2 d</td>
<td>75%</td>
<td>5b</td>
<td>p-xylene, autoclave, 180 °C</td>
<td>2 d</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td>6a</td>
<td>mesitylene, reflux</td>
<td>1 d</td>
<td>50%</td>
<td>6b</td>
<td>p-xylene, autoclave, 180 °C</td>
<td>2 d</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td>7a</td>
<td>CHCl_3, reflux</td>
<td>3 d</td>
<td>78%</td>
<td>7b</td>
<td>mesitylene, reflux</td>
<td>1 d</td>
<td>85%</td>
</tr>
<tr>
<td></td>
<td>8a</td>
<td>DCE, reflux</td>
<td>4 d</td>
<td>39%</td>
<td>8b</td>
<td>p-xylene, autoclave, 180 °C</td>
<td>3 d</td>
<td>59%</td>
</tr>
<tr>
<td></td>
<td>9a</td>
<td>chlorobenzene, reflux</td>
<td>2 d</td>
<td>73%</td>
<td>9b</td>
<td>chlorobenzene, reflux</td>
<td>1.5 d</td>
<td>47%</td>
</tr>
<tr>
<td></td>
<td>10a</td>
<td>chlorobenzene, reflux</td>
<td>12 h</td>
<td>60-70%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO_2Me</td>
<td>11a</td>
<td>p-xylene, autoclave, 180 °C</td>
<td>12 h</td>
<td>80-95%</td>
<td>11b</td>
<td>CHCl_3, reflux</td>
<td>1 d</td>
<td>70%</td>
</tr>
<tr>
<td>CONH_2</td>
<td>12a*</td>
<td>DMSO, 100 °C</td>
<td>12 h</td>
<td>50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH_3</td>
<td>13a</td>
<td>p-xylene, autoclave, 180 °C</td>
<td>3 d</td>
<td>80-90%</td>
<td>13b</td>
<td>p-xylene, autoclave, 180 °C</td>
<td>3 d</td>
<td>70%</td>
</tr>
<tr>
<td>CH_S</td>
<td>14a</td>
<td>p-xylene, reflux</td>
<td>1 d</td>
<td>75%</td>
<td>14b</td>
<td>mesitylene, reflux</td>
<td>2 d</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>15a</td>
<td>p-xylene, autoclave, 180 °C</td>
<td>2.5 d</td>
<td>50-50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compound 12a was obtained as a mixture with 1,4-dihydro-1,2,4,5-tetrazine-3,6-dicarboxamide. The yield of 12a was determined from the integral intensity ratio in the ‘H-NMR spectrum. A cocrystal of 12a, 12a’, was prepared using 4,7-di-tet-butylacenaphthylene as a disphile. Conditions: DMSO, 120 °C, 1 h, 95%.

Throughout the experimental, 2,5-di-tert-butylacenaphtho[1,2-d]pyridazine-7,10-dicarboxamide was referred to as 12b when it should have been referred to as 12a'.

The synthesis of di- and oligo-nucleotides containing a phosphorodithioate internucleotide linkage with one of the sulfur atoms in a 5'-bridging position

Magdalena Olesiak, Wojciech J. Stec and Andrzej Okruszek

The authors regret the following error:

On page 2165, in a drawing that is part of Fig. 2 illustrating the spatial arrangement of substituents around chiral phosphorus atoms in compounds S_p-T_p(S) T (SLOW) and S_p-T_p(S) T (3b-SLOW), the positions of the non-bridging oxygen and sulfur atoms were erroneously drawn. The corrected version of the drawing is shown below.
The in vitro transport of model thiodipeptide prodrugs designed to target the intestinal oligopeptide transporter, PepT1

David Foley, Myrtani Pieri, Rachel Pettecrew, Richard Price, Steven Miles, Ho Kam Lam, Patrick Bailey and David Meredith

The authors regret the following error:

One of the authors’ names was spelt incorrectly. The correct spelling is Steven Miles not Stephen Miles.

Fluorogenic affinity label for the facile, rapid imaging of proteins in live cells

The authors regret the following error:

Fig. 4 caption should read:

Fig. 4 Effect of dielectric constant on the lactone–quinoid equilibrium of 12, 13, and unmasked 1. Absorption spectra of (A) 12 (12.5 μM), (B) 13 (12.5 μM), and (C) unmasked 1 (50 μM) in mixtures of dioxane and water. (D) Absorption at λ_{max} in the spectra in panels A–C. Values of ε are from ref. 28.

Parts (A), (B) and (C) were assigned incorrectly.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

Additions and corrections can be viewed online by accessing the original article to which they apply.