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Infestation patterns of the sea louse Lepeophtheirus salmonis from 44 salmon farms in the Hardangerfjord on
the south-west coast of Norway over the period 2004 to 2007 were assimilated to create 20-month
production cycle profiles for spring and autumn stocked generations. The timing and frequency of in-feed and
bath treatments to control sea lice associated with these profiles was considered. Spring and autumn stocked
farms were observed to have different patterns of sea lice counts on salmon during the first and second years
of production. Spring stocked sites experienced increasing infestation toward the end of the first year and on
average counts remained elevated thereafter, whereas autumn stocked sites averaged lower sea lice counts
throughout most of the production cycle until the latter part of the second year when these escalated rapidly.
In-feed treatments were the predominant form of sea lice control in the first half of the production cycle on
spring stocked farms, whereas bath treatments were used exclusively in the second half of the production
cycle; a very similar pattern of therapeutant use was observed on autumn stocked farms.
Results using the SLiDESim (Sea LiceDifference Equation Simulation) infectionmodel and a range of biological
and production parameters showed that modelling resulted in a better fit to the mobile lice profiles for
autumn stocked farms compared to spring stocked farms. Some features of the mobile lice profiles were not
captured by the infection model such as the oscillation of the population between months 11 and 18 of the
production cycle on spring stocked farms, and a large peak observed in month 19 on autumn stocked farms.
Before modelling can be used to evaluate optimal treatment strategies or other management interventions
there remains a need to more clearly understand the underlying biological processes associated with the
dynamics of sea lice infestations in the Hardangerfjord.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Sea lice infections are a seriousworldwide threat to indigenous wild
salmon populations and the sustainability of farmed salmon production
units (Krkošek et al., 2007; Costello, 2009). In recent years the control of
lice in European and North and South American salmon producing
countries has become critical with many countries adopting strategic
regional sea lice control programmes (Heuch et al., 2005; Revie et al.,
2009). Not only can lice have a negative impact on farmed fish, in terms
of product quality and farm productivity, but increasingly lice infected
salmon farmsmay be a source of Lepeophtheirus salmonis infestation for

wild salmon populations (Bjørn et al., 2001; Krkošek et al., 2007; Marty
et al., 2010). In particular, young sea-faring wild salmon and sea trout
may be exposed to sea lice sources from fish farms (Gargan et al., 2003;
Heuch et al., 2005). Over the past decade salmon farms in Northern
Europe andChile have relied on a range of veterinarymedicines, applied
as in-feed or bath treatments, to control lice infestation levels (Sevatdal
et al., 2005; Lees et al., 2008a). This has successfully driven down
infections on farmed salmon populations with many control pro-
grammes achieving a low prevalence of infestation and lice abundances
of less than one adult female per fish (Heuch et al., 2009; Heuch et al.,
2011-this issue). The use of such medicines is not only expensive but
comeswith environmental concerns, aswell as increasing evidence that
lice populations are becoming tolerant to such treatments (Denholm et
al., 2002; Fallanget al., 2004; Sevatdal et al., 2005;Bravoet al., 2008; Lees
et al., 2008b). There is a need to better understand the epidemiology of
lice infections on farms and to conserve the use of medicines if they are
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to remain effective (Fallanget al., 2005; Lees et al., 2008c;Westcott et al.,
2008).

Over the past decade mathematical modelling has increasingly
been used as ameans to better understand the transmission of aquatic
pathogens (Reno, 1998; McCallum et al., 2004; Murray, 2009; Green,
2010). Work in this area has included the consideration of sea lice
population dynamics. A number of studies have focused on potential
interactions between sea lice from wild and farmed sources (Murray
and Gillibrand, 2006; Krkošek et al., 2006; Foreman et al., 2009), while
a few have specifically modelled the biological development of lice
populations in laboratory (Tucker et al., 2002; Stien et al., 2005) or
field (Revie et al., 2005; Krkošek et al., 2009) settings.

The Hardangerfjord in the south-west of Norway supports a large
number of production units and is an important salmon producing area
where coordinated sea lice control is widely practised (Heuch et al.,
2009). A three year Hardangerfjord project was initiated in 2004 to
better understand the dynamics of sea lice populations over awide area.
By 2007 a large body of data had become available on sea lice
populations from different salmon farms and how these populations
were being controlled (Heuch et al., 2009). This communication reports
on the epidemiological patterns of infection found on farms in the
Hardangerfjord and explores the adaptation of a mathematical
population model to explore the interaction between L. salmonis
infections and treatment during spring and autumn stocked production
cycles.

2. Materials and methods

2.1. Hardangerfjord lice infection data

The Hardanger Fish Health Network (HFN) has operated since
2004 in the Hardangerfjord on the south-west coast of Norway where
there is a high density of salmon farms. This network was a key
partner in the Hardangerfjord Salmon Lice Project which had the
overall goal of understanding the complex interaction of hosts,
parasites, environment and fish farms (Heuch et al., 2009).1 In total
16 of the 18 fish farming companies, controlling around 95% of the
farmed fish population in the fjord, participated in the project with an
aim of keeping mean lice abundance below agreed levels, particularly
during the wild smolt run in May.

Throughout each production cycle, farms in the Hardangerfjord
provided stocking information, together with sea lice counts and
treatment data to the HFN. Sea lice counts were collected according to
guidelines provided in standard sampling protocols. This enabled
abundance, measured as the mean number of lice found on sampled
fish (Bush et al., 1997), and sea lice treatment interventions to be
monitored across the fjord on a continuous basis. In addition dedicated
counting teams collected detailed counts of lice on farmed fish between
April and September each year. Data supplied to the HFN by each farm
were cross-checked against data collected by the counting teams.
Where discrepancies arose, farmswere asked by the HFN to check their
own records and the correct information was identified. Farm stocking,
lice counts and treatment datawere available for 69 salmon farms in the
Hardangerfjord between 2004 and 2007, although not all farms were
stocked every year.

The data were analysed to create a profile of lice abundance and
treatment on every farm throughout each production cycle. Most
farms practised a single year class stocking pattern with either spring
or autumn stocking, followed by a fallowing period. Two characteristic
sea lice infestation profiles were developed; one for sites that stocked
in the spring and one for sites that stocked in the autumn. Mixed year
class production cycles, and those where it was not possible to

determine the year class of the smolts, were discounted for the
purpose of creating these profiles.

It has previously been shown that salmon farms in the inner fjord
generally have a lower abundance of salmon lice (Heuch et al., 2009).
In the data set under consideration in this study a majority of sites
were located in the inner fjord area for both the spring and autumn
stocked groups, though the percentage of inner fjord sites (70%; 19 of
N=27) in the spring group was higher than was the case for the
autumn stocked group (54%; 13 of N=24).

2.2. SLiDESim model for lice infections

The SLiDESim (Sea Lice Difference Equation Simulation) infection
model is based on a mathematical representation of L. salmonis
populations on farmed fish. Its application to lice infestation on
Scottish farms has been described in detail by Revie et al. (2005). The
model consists of six compartmental “stages”. The first compartment/
stage includes the egg and the two planktonic stages. From this first
compartment lice move to the infective copepodid and chalimus I–IV
compartmental stage. Following varying periods of biological devel-
opment lice leave the chalimus compartment and develop to the pre-
adult and then to the adult compartmental stages. A separate
compartmental stage is assigned to gravid females as this gives rise
to the egg and planktonic stages and completes the life-cycle. An
external compartmental stage is included to represent the flow of
external copepodids which migrate in to the infective copepodid/
chalimus compartmental stage of the life-cycle model. This external
infective pressure is necessary to initiate infection on fish and to
represent on-going external infestation pressure from sources such as
neighbouring farms or wild salmonids. Each compartment represents
lice abundance and is modelled using a delay differential equation to
ensure that population stages take account of the different biological
development times. The key mathematical equations for the life cycle
between the infective copepodid, chalimus, pre-adult and gravid
female stages follow from those given in Revie et al. (2005)

dL1 tð Þ
dt

= F tð Þ−F t−τ1ð Þe−b1τ1−b1 tð ÞL1 tð Þ

dL2 tð Þ
dt

= ηF t−τ1ð Þe−b1τ1−ηF t−τ1−τ2ð Þe−b1τ1−b2τ2−b2 tð ÞL2 tð Þ

dL3 tð Þ
dt

= ηF t−τ1−τ2ð Þe−b1τ1−b2τ2

− ηF t−τ1−τ2−τ3ð Þe−b1τ1−b2τ2−b3τ3−b3 tð ÞL3 tð Þ

dL4 tð Þ
dt

= ηF t−τ1−τ2−τ3ð Þe−b1τ1−b2τ2−b3τ3−b4 tð ÞL4 tð Þ

where L1, L2, L3 and L4 are the number of lice per fish in the chalimus,
pre-adult female, adult female and gravid female stages respectively;
Ƭ1, Ƭ2 and Ƭ3 are the times spent in the chalimus, pre-adult and adult
stages respectively; b1, b2, b3 and b4 are the mortality rates in the
chalimus, pre-adult, adult female and gravid female stages respec-
tively; F represents the population feedback and external infection
pressure; and η is the fraction of the chalimus population that develop
into females.

The average periods of development for chalimus, pre-adult, adult
and egg to chalimus used in the model were 15, 20, 10 and 20 days
respectively, based on mean water temperature (Tucker et al., 2000). A
50:50 ratio of female to male adults was adopted and gravid females
were assumed to exponentially decline with a half-life of 12 days. It is
recognised that laboratory studies indicate development rates to be
affected by temperature and a theoretical outline indicating how such
variability could be modelled has been proposed (Stien et al., 2005).
However, previous investigations using the model and including

1 See also http://www.nina.no/Aktuelt/Artikkel/tabid/945/smid/873/ArticleID/422/
Default.aspx.
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temperature time-dependence has shown that seasonal variation in
temperature produced no discernable effect at farm population level
(Revie et al., 2003), though it is generally the case that the level of
variability in sea water temperatures in Norway exceeds that seen in
Scottish sea lochs (Heuch et al., 2003).

Previous versions of the model for sea lice infections on fish in
Scottish farms (Revie et al., 2005; Robbins et al., 2010) have been
extended to take account of important features associated with
farming practises in the Hardangerfjord. Most importantly, separate
models were developed for (i) farms stockedwith smolts in the spring
and those stocked in the autumn, and (ii) farms which used both in-
feed and bath treatments in the same production cycle to reflect the
practise used in the majority of farms in the HFN.

2.3. Treatment efficacy

Treatment efficacy is quite different for bath and in-feed veterinary
medicines. Bath treatments are modelled in the SLiDESim infection
model as previously reported; where it is assumed that when no
tolerance issues are known to exist an instantaneous knock-down
efficacy of 95% across all stages present on the fish is applied. The
topical products used were deltramethrin (Alphamax™, Pharmaq)
and cypermethrin (Betamax™, Novartis), both synthetic pyrethroids,
with around twice as many Alphamax™ treatments being applied
during the period under study in the Hardangerfjord. The only in-feed
treatment used was emamectin benzoate (SLICE™, Schering-Plough
Animal Health) with a similar total number of treatments over the
period as was the case for Alphamax™. In studying the application of
SLICE™ on Scottish farms, evidence emerged of an exponential
decline for the first 28 days to 0.2% and 0.7% of lice levels present at
the start of the treatment, for chalimus andmobiles respectively (Lees
et al., 2008b). The decline is typically followed by a gradual recovery
until a point of no effect after 70 days. While detailed estimates for
SLICE™ efficacy on Norwegian farms were not available, the Scottish
results are similar to those reported in British Columbia (Saksida et al.,
2007) and their adoption thus seems reasonable. If the minimum lice
count is m on day 28, ε is the efficacy, and an exponential decline and
recovery are assumed, this yields Eq. (1)

1−εð Þ =
e−λ1t 0≤ t ≤ 28;
meλ2 t−28ð Þ 28 b t ≤ 70

1 t N 70
;

8<
: ð1Þ

which can be solved for estimates of the growth rates λ1, λ2 as shown
below:

e−λ1t j t=28 = m⇒λ1 = − ln mð Þ
28

meλ2 t−28ð Þ jt=70 = 1⇒λ2 = − ln mð Þ
42 :

ð2Þ

The value ofm is determined from the percentage reduction of lice
counts and using Eq. (2) estimates for λ1 and λ 2 are obtained.

3. Results

Fig. 1a shows the profile of lice infestation on farms that were
stocked in the spring. The lice per fish represent the mean monthly
abundance for the three stages shown between May of the first
calendar year of production and December of the second, based on 27
production cycles from 23 farms. The autumn profile (Fig. 1b) is based
on 24 production cycles from 21 farms and shows mean monthly lice
abundances between October of the first year of production and May
of the third calendar year.

Both profiles were based on a 20 month production cycle and the
graphs also show the proportion of farms treated with either in-feed
or topical sea lice treatments in each month. The proportion of farms

treated varies from month to month with 50% of the farms being
treated in peakmonths and in particular in December. This reflects the
different treatment practises among sites despite a policy of
synchronised treatment being in place. Only sea lice treatments that
were recorded by either the farm or the dedicated counting teams
were included in the profiles; however some sudden drops in lice
counts suggest that a limited number of additional treatments may
have been given during the course of these production cycles.

It can be seen that spring and autumn stocked farms have different
patterns of sea lice counts on salmon. Spring stocked sites increased
counts toward the end of the first year and on average remained at
over 1.5 mobiles per fish thereafter, whereas autumn stocked sites
averaged lower levels (around 0.5 mobiles per fish) throughout most
of the production cycle until the autumn of the second year when they
rapidly escalated. For spring stocked farms in-feed treatments were
mostly used to control infections in the first year of production
although a substantial number of production cycles also included bath
treatments. In the latter half of the production cycles on spring
stocked farms only bath treatments were administered. The use of
veterinary medicines was somewhat different on autumn stocked
farms, where in-feed treatments are used on farms in the first year of
the production cycle followed by bath treatments in the second year.
Strategic winter delousing in the first year can also be seen, with well
over 50% of the sites carrying out treatments in the December to
January period, as recommended by the HFN. However it appears that
the impact of these treatments differed between the two types of
sites. While the abundance of chalimus and mobile stages on spring
stocked sites fell in response to the strategic treatments, they returned
to around their pre-treatment levels by February and March
respectively. In contrast the reduction in mobiles which followed
winter treatments on autumn stocked sites wasmaintained and levels
remained low until September.

Biological parameters are specified within the SLiDESim model to
represent the egg and stage survival rates and the external infective
pressure arising from themigration of infective copepodids fromoutside
the farm. The model commences the spring stocked production cycle at
the end of April, while for autumn stocked production cycles the model
starts at the end of October. These modelled start dates are broadly
consistent with the time of year when sites are stocked with smolts.

These young fish are initially exposed to free living infective
copepodids. Populations of these copepodids may arise from
neighbouring farms or passing wild fish external to the farm. The
young fish acquire chalimus infections which develop to the pre-adult
and adult stages, where gravid females give rise to the first generation
of infective on-site copepodids. The growing fish are continuously
challenged by successive generations of such copepodids at an
estimated average daily rate of infection as indicated by the gravid
female to chalimus ratio in Table 1.

In addition to the constant background external challenge the
farmed fish can also become infected from an external background
pulse of infective copepodids. A short intense pulse may arise from
migrating fish populations or the inflow of coastal water containing
copepodids (Wallace, 1998). For the Hardangerfjord spring and
autumn stocked farms a single pulse of 20 days duration at the end
of October significantly improved the fit of both models. The
additional daily rate of infection per fish during this pulse is indicated
by the background pulse height (Table 1).

The remaining parameter estimates were initially adopted from
experiences using the SLiDESimmodel on Scottish farmdata (Revie et al.,
2002). Refined estimates were obtained using local optimisation
searches to enhance the fit between the pattern of counts from the
model and the patterns observed on farms. These parameters for spring
and autumn stocked production systems are summarised in Table 1.

The results of applying the modified SLiDESim infection model to
spring stocked farms after local optimisation of the biological
parameters as described above are shown in Fig. 2a. The model is
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able to replicate the first major peak (circa November/December) and
the trough at the end of the first year and beginning of the second
year. Subsequent observed peaks (March and July) and troughs (May
and August) are not reproduced by the model but the overall trend of
increasing numbers of mobiles throughout the second year is
indicated. Given the low absolute level of lice counts the model
reflects the general observed mobile pattern but not the detail.

For autumn stocked farms the results from the SLiDESim infection
model when compared to the observed mobiles are more encouraging
than for spring stocked farms (Fig. 2b). Following the broad agreement
betweenmodel andobserved counts on theearlyfirst peak inDecember
at the end of the first year, the samegeneral pattern is obtained until the
end of the second year. In particular the model captures the notable
observed increase in mobile counts October to December of the second
year. However the observed increased mobile levels are seen to

continue until February before steeply declining, whereas the model
counts rapidly declined after December. Once again when making
comparisons between observed and model counts, caution is required
as the population density values are small and subject to measurement
uncertainty.

4. Discussion

The assimilation of data on farm stocking practise, sea lice counts
and treatment interventions on 44 farms in the Hardangerfjord from
2004 to 2007 facilitated the creation of ‘average patterns’ of sea lice
infestations. Patterns for spring and autumn stocked farms were seen
to be different. Spring stocked sites were associated with increased
counts toward the end of the first year and on average these counts
remained high, whereas autumn stocked sites were associated with

Table 1
Biological parameters adopted in the Hardangerfjord SLiDESim infection model to describe the different lice dynamics for spring and summer stocked farms.

Parameter Spring stocked Autumn stocked Description

Survival of chalimus 0.911 0.906 Probability an infective copepodid/chalimus stage louse survives
to become mobile.

Survival of mobiles 0.750 0.711 Probability a mobile stage louse survives to become an adult.
Gravid female to chalimus ratio (day−1) 1.889 0.720 Effective number of infective copepodids/chalimus returned to the

system per day from gravid females.
External infection (fish−1, day−1) 0.278 0.189 The average rate of arrival of external infective copepodids.
Background pulse height (fish−1, day−1) 1.500 3.330 The additional rate of arrival of infective copepodids during the

single external background pulse.
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Fig. 1. Profiles of the abundance of lice infestation by stage on spring (a) and autumn (b) stocked farms observed in the Hardangerfjord for the period 2004 to 2007 together with
treatment summaries per month.
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low counts throughout most of the production cycle until the autumn
of the second year when they rapidly escalated. There was clear
evidence of strategic and extensive use of in-feed and bath veterinary
medicines, with in-feed treatments being preferred in the first year of
each production system and bath treatments in the second year
before harvesting. This pattern of use has its origins in the long
withdrawal period set by the Norwegian authorities for SLICE™when
it was first introduced, and the fact that the price of using in-feed
treatments increases as fish become larger. Both withdrawal period
and, to a lesser extent, relative costs have changed, but the traditional
patterns of medicinal use apparently persisted during the period
under study.

The strategic treatments in December–January of thefirst year of the
production cycle appeared to producedifferent effects on the spring and
the autumn stocked fish. In the autumn stocked fish these treatments
reduced the abundance of mobile stages from around 1.5 to 0.2 from
December to February. The abundances of chalimus and adult females
were already below 0.5 and 0.1 respectively, and the intervention
appeared to maintain these levels for around six months. It is known
that the use of SLICE™ can significantly lower adult female lice
abundance (Olsen, 2005; Heuch et al., 2009), and that the residual
effect of treatments can last from two to five months, depending on the
re-infestation challenge (Lees et al., 2008b; Saksida et al., 2007). Thus
the patterns observed for autumn stocked sites are not surprising.What
is more difficult to explain is why a similar level of suppression is not

seen in the lice levels on spring stocked sites. These sites use,
proportionately, a similar level of SLICE™ treatments (in addition to a
small number of bath treatments) and yet the lice levels quickly
rebound after treatment and remain at around 2 mobiles per fish from
March onwards. What seems clear is that the level of gravid females
present on the spring-stocked fish is notably higher than that seen on
the autumn stocked site, perhaps simply due to the additional 6 months
that these fish have been in sea water. While the absolute abundance
appears low on the spring-stocked sites (at around 0.2–0.4) this still
represents a 10–20 fold increase on the levels recorded at the autumn-
stocked sites and it would appear to be this ‘reservoir’ of gravid females
that generates the relatively rapid re-infestation seen on spring-stocked
sites. This has direct relevance to the issue of setting treatment trigger
threshold levels; in that the potential for generating re-infestation on a
site, rather than any direct impact of fish welfare, may need to be taken
into account when such thresholds are being devised (Revie et al.,
2009).

Using the sea lice difference equation simulation (SLiDESim)model a
range of biological and production parameters were explored to obtain
the best fit to the patterns observed on the spring and autumn stocked
farms. The modelling took account of the frequency of application and
type of treatment practised on the farms.

Formodels of spring and autumn stocked farms itwas found that the
same stage development times for chalimus, pre-adult, adult, gravid
female and egg to chalimus stages as that used for Scottish farms led to
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Fig. 2. A comparison of modelled lice abundance from the SLiDESim infection model and the observed abundance of mobile lice infestations on spring (a) and autumn (b) stocked
farms observed in the Hardangerfjord for the period 2004 to 2007.
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broad agreement between observed and predicted mobile counts. The
models alsoworkedbestwhen the spring andautumnproduction cycles
had similar survival rates for the chalimus and mobile stages and were
initiated 120 days after the beginning and the midpoint of the calendar
year respectively. Although no formal sensitivity analyses have been
illustrated to address uncertainty in parameter estimates, experience
from using the model does indicate it to be sensitive and small changes
in parameters can lead to different sea lice profiles. This is consistent
with sea lice populations being opportunistic and having the capacity to
increase and diminish in very short periods of time unlike many host–
parasite systems where a stable equilibrium exists.

In the present data set, the spring stocked and autumn stocked farms
were approximately equally distributed on the inner and outer areas of
the fjord, with slightly more autumn stocked farms being located in the
outer area. All else being equal, onewould therefore expect that the two
groups of farms had about the same lice abundances or that the autumn
stocked group might have slightly more lice due simply to being in the
outer (more saline) areas, which have been reported to have higher lice
levels (Bricknell et al., 2006; Heuch et al., 2009). The fact that the
opposite was observed indicates that the reason that spring stocked
farms appear to be infested with more lice, and exhibit poorer winter
delousing results, is not due to their siting.

The results show that modelling gives an approximate fit to the
observed Hardangerfjord lice abundance patterns. However for spring
stocked farms the model was unable to produce the oscillatory
pattern of counts observed following the first major peak in the
production cycle, even after localised numerical searches were
undertaken to refine the biological parameters. For autumn stocked
farms the mobile lice counts obtained using the model broadly
resembled the observed counts and suggested that a systems
modelling approach has the potential to predict farm outcomes.

A much higher daily rate of gravid female eggs converting to
chalimus and a higher daily external infection rate from other farms or
wild fish were required for the spring stocked model than was the case
for the autumn stockedmodel. This would translate to a higher survival
rate of eggs on a female louse to the settlement of copepodid and
development to chalimus in the case of spring stocking. This phase
includes the free living period of the parasite's life, and suggests that if
the model is capturing real biological or physical differences, the
survival of the planktonic stages is better and the probability of a
successful infection higher for lice infecting spring stocked salmon. It is
possible that this reflects the fact that stocking farms in springwould be
more aligned to the natural ‘stocking’ of themarine environment by sea
trout and salmon smolts in spring (Jonsson, 1985; Shearer, 1992), and
that the lice may be better adapted to this part of their host's ecology.

Additional external pulses of infective copepodids were required in
October for bothautumnand spring stocked farms, but themagnitudeof
the pulse had to bemuch greater for the autumn stocked farmmodel. In
contrast to the differences in the infection/survival rate parameters
noted above, it is not obvious what biological and/or environmental
factors might require this increased ‘background’ pulse for autumn
stocked farms. It may simply be the case that this was the most
mathematically convenient parameter to provide the model with a
reasonable fit to the unusually high level of observed mobile lice in the
winter of the second year for these autumn stocked sites.

Clearly the observed infestation patterns on farms is multi-
factorial and requires careful timing of external pulses and the
identification of a credible set of biological parameters to obtain viable
patterns for mobile counts on both spring and autumn stocked farms.
Before themodel can be used to evaluate optimal treatment strategies
there is a need to further understand parameters indicated by the
model and their reconciliation to the underlying biological and
environmental processes. This would include the re-examination of
the role of temperature on development rates, the impact of salinity
on survival from one stage to another, the ratio of male to female lice
in different stages, the age-related resistance of fish to infection, and

the variability associated with the distribution of lice on fish when the
prevalence of infection is low in farm management systems where
treatment is administered in response to an increase in lice counts.
The modelling approach offers a unique way forward for the
evaluation of the impact of different treatment strategies, as reported
for cypermethrin by Robbins et al. (2010), the scope for investigating
the dynamics of lice populations in relation to the sensitivity of
biological determinants, and the ability to explore the onset of
resistance to therapeutants.
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