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Abstract: This paper examines the effect of friction and back pressure on the formability of 

superplastically formed aluminium alloy AA7475 sheet at the temperature of 517 °C. Several 

experiments with lubrication and back pressure are performed using a simple box shape tool cavity. 

The coefficient of Coulomb friction between the formed sheet and tool has been determined 

indirectly using a finite element model to simulate superplastic forming of the box shape. Typical 

values determined for all lubricant conditions tested are in the range 0.1 < µ < 0.2. The void growth 

with strain was determined directly from measurements as a function of back pressure. The results 

show the application of back pressure at 1 MPa reduces the growth of voids from 7% to 0.3% void 

volume fraction at a logarithmic thickness strain of 0.65. This paper reports back pressure has a 

significantly greater role than friction in enhancing the formability of the alloy.  

Introduction 

Superplasticity is the ability of a metal alloy to be permanently stretched to very high elongation 

for a certain combination of temperature and strain rate [1,2]. Superplastic forming (SPF) of sheet 

metal alloys uses the high ductility and relatively low forming pressures to manufacture 

components with intricate shapes in a single forming operation. Components of high structural 

integrity may be produced this way, enabling an assembly with fewer parts and reduced weight. 

SPF technology is used in high value products and small volumes. Although some aluminium alloys 

have found application in niche vehicles products in the automotive sector, the quantities are 

relatively low volume. The process and material cost remains a barrier to broader application of the 

technology across industry sectors. 

The presence of contact friction between sheet and tool surface results in a thickness strain 

gradient in the formed component. The coefficient of Coulomb friction between SPF aluminium 

alloy sheet and tool material has been determined using test apparatus for direct measurement of 

friction [3]. However, details of the test apparatus used are not clearly described. Laboratory tests 

were performed both with and without lubrication (using graphite) for workpiece and tool material 

in contact at SPF temperatures, in both air and nitrogen atmospheres. The pressure applied between 

workpiece and tool was varied in the range 1 to 8 MPa. The coefficient of friction was measured for 

SPF aluminium grades AA7475 and AA5083, and steel and alumina based cement tool materials. It 

was found that the lubricant and atmosphere had little effect on the coefficient of friction. For the 

AA7475 alloy, the coefficient of friction decreases, typically from 0.2 to 0.1, as normal pressure 

increases in the range tested. Another study [4] with AA8090 has reported Coulomb friction varies 

with position of sheet in the tool; the friction coefficient over the die entry radius and side walls is 

substantially higher than at the base of the tool. 

Fine grain aluminium alloy sheet tends to form small cavities under superplastic deformation. 

The void volume fraction of the cavities increases exponentially with strain [2,5,6,7], and their 

growth rate is dependent on the stress state, temperature and strain rate. For AA7475, the higher 

forming temperature of 521 °C defers [5] the void growth to a higher strain (ε>1); at the strain rate 
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of 14s102 −−× this forming temperature gives the highest strain rate sensitivity exponen

effect of strain rate on the rate of cavity growth in the SPF range is less significant than 

temperature. It has been reported that 

tensile stress state over uniaxial 

tension increases the level of hydrostatic tensile stress. A compressive stress applied normal to the 

plane of the sheet using a hydrostatic pressure (

[6] in the material under a biaxial stress state if 

stress of the material at the optimum strain rate and forming temperature. Here 

> 2 MPa. 

In the present study, the formability of AA7475 (2 mm thick) at the SPF temperature of 517 °C 

is investigated. The experiments performed use a simple box shape 

effectiveness of a Boron Nitride lubricant to reduce friction between work

the method of application of lubricant. In combination with the lubricant trials

applied, which is varied at three levels. It is desirable to reduce both friction and

reduce process costs and improved utilisation of mat

Experimental procedure 

The shape of the tool cavity to form the box is 300 x 300 mm plan and 150 mm deep with a 2° 

draft angle at the walls of the cavity. Further dimensions are given in Fig. 1. The overall tool plan 

size is 500 x 500 mm and the tool material is H13 grade 

at the specified locations (see Fig. 1) after forming.

Dimension [in mm] of tool cavity 
 

B1 B2 D1 

300.0 300.0 150.0 

Figure 1: Geometry of the tool cavity showing locations for thickness measurements.
 

The experimental plan is summarised in table 1. In total three boxes are formed. 

Nitride is mixed with three parts 

dust coat brushed onto the sheet bef

before forming. In test 3 a thick coat is sprayed onto the sheet and tool cavity

forming.  

this forming temperature gives the highest strain rate sensitivity exponen

effect of strain rate on the rate of cavity growth in the SPF range is less significant than 

temperature. It has been reported that the rate of growth of cavities increases under an equi

tensile stress state over uniaxial tensile stress state for a range of aluminium alloys [7]. Biaxial 

tension increases the level of hydrostatic tensile stress. A compressive stress applied normal to the 

plane of the sheet using a hydrostatic pressure (p) will decrease the rate of void

[6] in the material under a biaxial stress state if p > 0.75σe; where σe is the equivalent uniaxial flow 

stress of the material at the optimum strain rate and forming temperature. Here 

rmability of AA7475 (2 mm thick) at the SPF temperature of 517 °C 

is investigated. The experiments performed use a simple box shape tool 

Boron Nitride lubricant to reduce friction between work piece and tool by varyin

the method of application of lubricant. In combination with the lubricant trials

which is varied at three levels. It is desirable to reduce both friction and

and improved utilisation of material in the end product.           

The shape of the tool cavity to form the box is 300 x 300 mm plan and 150 mm deep with a 2° 

draft angle at the walls of the cavity. Further dimensions are given in Fig. 1. The overall tool plan 

ze is 500 x 500 mm and the tool material is H13 grade tool steel. The sheet thickness is measured 

at the specified locations (see Fig. 1) after forming. 

L R1 R2 R3 R4

85.0 15.0 4.0 15.0 4.0

: Geometry of the tool cavity showing locations for thickness measurements.

experimental plan is summarised in table 1. In total three boxes are formed. 

is mixed with three parts of water. The method of application of lubricant 

dust coat brushed onto the sheet before forming. In test no. 2 a dust coat is sprayed onto the sheet

a thick coat is sprayed onto the sheet and tool cavity

this forming temperature gives the highest strain rate sensitivity exponent m ≅ 0.8. The 

effect of strain rate on the rate of cavity growth in the SPF range is less significant than 

increases under an equi-biaxial 

for a range of aluminium alloys [7]. Biaxial 

tension increases the level of hydrostatic tensile stress. A compressive stress applied normal to the 

void growth with strain 

is the equivalent uniaxial flow 

stress of the material at the optimum strain rate and forming temperature. Here σe ≅ 3 MPa so that p 

rmability of AA7475 (2 mm thick) at the SPF temperature of 517 °C 

tool cavity to study the 

piece and tool by varying 

the method of application of lubricant. In combination with the lubricant trials, back pressure is 

which is varied at three levels. It is desirable to reduce both friction and back pressure to 

erial in the end product.            

The shape of the tool cavity to form the box is 300 x 300 mm plan and 150 mm deep with a 2° 

draft angle at the walls of the cavity. Further dimensions are given in Fig. 1. The overall tool plan 

. The sheet thickness is measured 

 

R4 R5 

4.0 25.0 

: Geometry of the tool cavity showing locations for thickness measurements. 

experimental plan is summarised in table 1. In total three boxes are formed. The Boron 

of lubricant in test no. 1 is a 

a dust coat is sprayed onto the sheet 

a thick coat is sprayed onto the sheet and tool cavity surface before 
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Three levels of back pressure (pb) are studied; these are p = 0, 1 and 2 MPa. The pb is held 

constant in each experiment while forming is performed. A forming pressure (pf) is superimposed 

on the pb to create a pressure difference (pd) which is also common to each test undertaken so that pf 

= pb + pd. For example with pb = 0 then pf = pd; with pb = 1 MPa then pf (MPa) = 1 + pd. The typical 

pd required to form a box is 0.1pb at 1 MPa and 0.05pb at 2 MPa. The pf and pb are applied using 

pressurised inert gas which is fed and controlled by two separate lines. The rate of application of pf 

will allow the strain rate to increase up to fivefold from an initial rate of 14s101 −−× as the sheet is 

formed into the tool cavity. To prevent gas leakage during forming, the tool has a small lip 

protruding from the top surface of the tool. The lip bites into the deformable sheet when sufficient 

clamp load is applied between seal plate and tool to minimise leakage at maximum pressure. The 

clamp load is sufficient to restrain the sheet at the lip to prevent additional material being pulled 

into the tool cavity. The temperature of the tool during experiments is held at 517 ± 2 °C. 

Table 1: Experimental plan for the study. 

 
The test results obtained from the experiments are summarized in Table 2. In the case of test 1 

and 2 the shape of the formed box is different to the geometry of the tool cavity. This is because the 

sheet ruptured in the corner at R4 before the box had fully formed into the tool cavity. 

Table 2: Measured dimension [in mm] after SPF operation. 

 
The measured shape of the formed box in test no. 3 is consistent with the dimensions given in 

Fig. 1, because it had formed without rupture. The box in test no. 1 showed the greatest deviation 

between its final shape and the tool cavity. A combination of improved lubrication and higher back 

pressure is responsible for improving formability of the alloy under SPF conditions. 

The strain distribution around the box is determined by measuring the thickness at each position 

identified in Fig. 1. The thickness strain is calculated using the equation [Eq. 1]; 














=

f
t

t
ilnε

 

(1)

where ti = initial thickness and tf = final thickness of the sheet. The strain distribution in each 

formed box is given in Fig. 2. The graph shows that the strain gradient per unit length is steeper 

along the sides than along the base.  

 

TEST No. LUBRICANT & METHOD
BACK 

PRESSURE

FORMING 

TEMPERATURE

BORON NITRIDE (DAG 5710) Mixed with 3 parts water MPa oC

1 Dust coat brushed onto sheet before forming (none on tool) 0 517 +/- 2

2 Dust coat spayed onto sheet before forming (none on tool) 1 517 +/- 2

3
Thick coat spayed onto sheet before forming and tool cavity 

surface during tool heat
2 517 +/- 2

Test No. R1 R2 R3 R4 R5 Notes 

1 15.0 12.0 15.0 30.0 32.0 Sheet ruptured at R4 

2 15.0 8.0 15.0 15.0 30.0 Sheet ruptured at R4 

3 15.0 4.0 15.0 4.0 25.0 No rupture (fully formed) 
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Figure 2: Thickness strain results for each formed box. 
 

The void volume fraction in the material was measured in each formed box at various levels of 

thickness strain in the range 0.65 < ε < 1.3. The Fig. 3 shows the effect of back pressure on the 
growth of voids with strain. The figure shows for box 1 with pb = 0 the void volume fraction attains 

7% at ε ~ 0.65 and increases to a little over 10% at ε ~ 1.3. For the remaining test boxes 2 and 3, the 

void volume fraction does not exceed 0.3% in the strain range measured. 

 
Figure 3: Effect of back pressure on the development of cavities with strain. 

Finite element modelling 

To investigate the effect of friction on the resulting strain gradient in each of the formed boxes a 

finite element (FE) model is developed using LS-DYNA[8] to simulate SPF of the box shape. The 

coefficient of Coulomb friction between the formed sheet and tool surface will be determined 

indirectly from the model, by reducing the error in the measured thickness strain distribution 

between model and test for each formed box.  

The advantage of symmetry is utilized and only a quarter of the geometry is modelled in three 

dimensions to reduce computational time as shown in Fig. 4. The deformable sheet (2 mm nominal 

thickness) is described using plane stress quadrilateral shell elements. The stress tensor normal to 
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the plane of the shell element is zero for this element type. The shell element used is a reduced 

integration formulation with stiffness hourglass control to suppress the formation of hourglass 

modes. Five through thickness integration points describe the bending stiffness of the deformable 

shell element. The geometry of the tool surface is described in the FE model as shown in Fig. 1 and 

given a rigid material description. 

A review of the material models under superplastic flow conditions is given in the paper [9]. The 

material in the finite element model in this paper is described by a viscoplastic constitutive 

hardening law of the form [Eq. 2]; 

mnεεkσ �=  (2)

The hardening constant k, strain hardening exponent n and strain rate sensitivity exponent m, 

may each be a varying function of ε, �� and T, where �� is strain rate and T is temperature. The 

parameters in the material model are fitted to test results derived under uniaxial tensile conditions in 

the strain rate and plastic strain range of interest [2]. 

The friction law used with the contact algorithm is Coulomb’s formulation in which friction 

force is proportional to the normal force between the surfaces in contact [Eq. 3]; 

NµF =  (3)

 

where F is the friction force, µ is the coefficient of friction and N is the normal force between the 

surfaces in contact. Here µ  is taken to mean sliding friction and not the resistance to overcome 

static friction for a body initially at rest which typically has a higher value. The Coulomb friction 

model may be applied until the shear stress (τ) of the work piece material is exceeded typically 

when τ > 0.577σe. Above this threshold, the shear strength of the material offers lower resistance and 

contact friction is proportional to the flow strength of the material. Eight values of µ are 

investigated using the Eq. 3 in the FE model; these are 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. 

 

Figure 4: FE model of sheet and tool cavity (quarter symmetry used). 

The forming simulation reproduced the differential pressure rate (pd) which is common to each 

back pressure (pb) used in the three experiments. Because the normal stress tensor of a plane stress 

shell element is zero there is no purpose in simulating pf and pb as separate pressure loads in the FE 

model. The total duration of the forming time was 12000 sec (~ 3 ½ hrs). The model was tested 

536 Sheet Metal 2011

http://www.scientific.net/feedback/112322
http://www.scientific.net/feedback/112322


 

using explicit and implicit algorithms with 

measured at a node in the corner of the deforming sheet. Although the difference in the result is not 

great, the explicit algorithm is used to support the wider numerical investigations.
 

Figure 5: Comparing strain rate derived at a node in the 

methods using the 

Results and discussion 

The distinguishing variable in the 
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n the corner of the deforming sheet. Although the difference in the result is not 
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Figure 7: Correlation of strain point measurements between model and test box 3, and correspondence to line 

of ideal linear correlation. 

 

The method to determine the friction coefficient uses linear correlation between strain point 

measurements obtained from the experiments and the simulation of each box. For box 3, Fig. 7 

shows a line of best fit through the data for µ = 0.01 and 0.2. It is observed that the line fitted to the 

data converges towards the line of ideal correlation as µ increases from 0.01 to 0.2; hence the error 

in strain point measurement decreases with increasing µ. With µ > 0.2 it was found the error 

increases. For box 3, the minimum error in strain point measurement is given with µ = 0.2. 
 

 

Figure 8: Comparing strain point measurements from test box 3 with simulated results for selected values of 

friction coefficient. 

 

Fig. 8 compares strain point measurements from experiment no. 3 with simulated results for µ = 

0.01, 0.2, 0.5. The highest error is observed for µ = 0.01 and this generally occurs across the base 

sections of the formed box. The smallest error is with µ = 0.2 but increases only marginally for µ > 

0.2. 
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The method of linear correlation is applied to the data of box 1 and 2 to determine the value of µ 

that gives the minimum error between model and test result for strain point measurements across 

each formed box. The table 3 summarises the results. 

 

Table 3. Table of calculated friction coefficients 

 
The results are surprising because it was expected the value of µ for box 3 would give the lowest 

value resulting from the lubrication method used to reduce friction between workpiece and tool, and 

box 1 would give the highest value. Although 0.1 < µ < 0.2 is in agreement with the findings 

reported in [3] in which µ was determined by direct measurement and the lubricant studied 

(graphite) had little effect on µ. 

Conclusions 

The results confirm that back pressure has a significantly greater effect than friction in enhancing 

the formability of the sheet alloy material. A higher level of back pressure reduces the rate of 

growth of voids with strain in the material, thereby allowing greater thickness strain in the formed 

box. 

A more elaborate FE method in which back pressure is included in the model may yield different 

values for µ. The FE model should include a void growth rate function to describe the material 

behaviour as a function of stress state and strain. Such a material model would require the use of 

continuum (or brick) elements with eight corner nodes to model the sheet material and this demands 

high computational cost. Nevertheless the simplified approach to modelling adopted in this paper 

using plane stress shell elements with 4 corner nodes to describe the sheet material is typical of 

industrial practice. Hence to simulate the superplastic forming of AA7475 using a Boron Nitride 

lubricant a suggested value for µ >= 0.1 to a first approximation. With µ < 0.1 the error increases 

significantly. 
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BOX 1 BOX 2 BOX 3

Coefficient of friction 0.1 0.2 0.2
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