Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Strain rate effects on the shear properties of a highly orientated thermoplastic composite material using a contacting displacement measurement methodology– Part A : Elasticity and strength

Papadakis, N. and Reynolds, N. and Pharaoh, M. and Wood, Paul and Smith, G.F. (2004) Strain rate effects on the shear properties of a highly orientated thermoplastic composite material using a contacting displacement measurement methodology– Part A : Elasticity and strength. Composites Science and Technology, 64 (5). pp. 729-738. ISSN 0266-3538

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper is concerned with the characterisation of the shear mechanical properties of glass-fibre-reinforced thermoplastic composite laminates over a range of strain rates. The research was carried out as part of the DTI/EPSRC-funded CRACTAC programme, which was part of the FASMAT Foresight Vehicle suite of projects. Twenty-two [±45]2s laid-up specimens each were tested at 5, 50 and 500 (mm/min) crosshead displacement rates, using a universal testing machine. The longitudinal and transverse strains were obtained experimentally using contacting extensometry apparatus and then transformed to the ply axis using Classical Laminate Theory. A rigourous statistical treatment method was proposed for the processing and analysis of the raw data. The shear modulus decreased for increasing strain rate. The shear failure stress increased for increasing strain rate. Semi-empirical linear functions of the shear modulus and shear failure strength were proposed with respect to the logarithm of the shear strain rate. The shear failure strain was independent of strain rate. Finally, the observed opposing trends of in-plane shear modulus and shear failure stress suggested that shear damage evolution is strain rate dependent for the examined material.