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Abstract: Order stars are applied to Brown (K, L) methods. They are displayed pictorially for
a selection of methods and are used to provide succinct proofs of existing results. Asymptotic
results concerning their stability are also presented.
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1. BROWN METHODS

For the differential equation y′ = f (x, y), y = y(x), and fixed integers, K and L, the Brown (K, L) methods[1]

are defined by
K∑

i=0

αiyn+i =

L∑
j=1

h jβ j f ( j−1)
n+K , (1)

where the constants αi and β j are chosen so as to obtain the highest order possible for the method ( f ( j)
n+K

denotes the j−derivative of the function f with respect to x at the point xn+K). Here h denotes the mesh
spacing. Jeltsch and Kratz[2] proved that the coefficients are given by

αi = (−1)K−i
(

K
i

)
(K − i)−L, i = 0, . . . ,K − 1, αK = −

K−1∑
i=0

αi, (2)

β j =
(−1) j

j!

K−1∑
i=0

(−1)K−i
(

K
i

)
(K − i) j−L, j = 1, . . . , L. (3)

For L = 1, Brown (K, L) methods reduce to the Backward Differentiation Formulae known as BDF
methods; these were the first numerical methods to be proposed for stiff differential equations[3].
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The addition of derivatives in numerical methods gives more scope for better stability characteristics,
such as larger regions of absolute stability[4]. Even though the computation of derivatives is expensive, the
combination of the use of higher derivatives and other methods can produce new and improved methods[5].
For this reason, we study the stability of Brown methods through the theory of order stars; although little
used in the literature, this new tool enables the stability of numerical methods to be analysed in a more
concise and, arguably, more elegant way.

The Brown (K, L) methods may be represented by their characteristic polynomials

ρ(z) =
K∑

i=0

αizi and σ j(z) = β jzK , j = 1, 2, ..., L. (4)

A method is zero-stable if the zeros of the polynomial ρ(z) are in the unit disc and the zeros of modulus
one are simple. Further, a method is said to be zero-unstable if it is not zero-stable. Here we have been
essentially concerned with stability as the mesh spacing h tends to zero. Stability is also of interest in a
practical situation when h is fixed, but when we would like the solution to remain bounded or tend to zero
as n, the number of steps, increases indefinitely. To study “fixed step” stability the difference equation is
often applied to the linear test equation y′ = λy resulting in, for linear multistep methods, the characteristic
polynomial

π(w, z) = ρ(z) − zσ(z), z = hλ. (5)

For multiderivative methods the corresponding characteristic polynomial is

π(w, z) = ρ(z) −
L∑

j=1

z jσ j(w), z = hλ. (6)

The stability of multistep multiderivative methods depends on the roots wi(z), 1 ≤ i ≤ k of π(w, z) = 0.
Note that π(w, z) → ρ(z) as h → 0 and wi(h) → wi, 1 ≤ i ≤ k, where {wi} are the zeros of ρ(w). For a
multiderivative method to be consistent, ρ(1) = 0 is required. This zero, represented by w1(h)), may be
regarded as the principal branch of π(w, z) = 0 since w1(h)→ w1 as h→ 0.

Definition 1.1 The set D = {z ∈ C / |wi(z)| ≤ 1, 1 ≤ i ≤ k} is called region of absolute stability of the
method, where C = C ∪∞.

Definition 1.2 If the set D consists of the whole of the left hand complex plane, then the method is said to
be A-stable.

More details about stability of multiderivative methods can be found in Ref. [6]. The following results are
known about Brown (K, L) methods.

Theorem 1.3 (Jeltsch and Kratz[2]) The Brown (K, L) methods have order of consistency p = K + L − 1.

Theorem 1.4 (Iserles and Norsett[7]) The Brown (K, L) method of order p is A-stable only if p ≤ 2L.
(Clearly this implies K ≤ L + 1).

Theorem 1.5 (Jeltsch and Kratz[2]) Let L be fixed. The Brown (K, L) methods become zero-unstable for
sufficiently large K.

Theorem 1.6 (Jeltsch and Kratz[2]) Let K be fixed. The Brown (K, L) methods become zero-stable for L
sufficiently large.

The purpose of this note is to introduce order stars for Brown (K, L) methods, compute the order stars
for a number of Brown methods and then to re-prove Theorems 1.5 and 1.6 succinctly using order stars.
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2. ORDER STARS

There are two types of order stars: order stars of the first kind and of the second kind and they have been
shown to be related[7]. Wanner et al.[8] were the first to describe them and a comprehensive account may be
found in Ref. [7]. For our purposes we shall only require order stars of the second kind and will therefore
only focus on these.

For the Brown (K, L) methods, let

R(z) =

L∑
j=1

σ j(ez)z j−1

ρ(ez)
, F(z) =

1
z
, (7)

and

µ(z) =

L∑
j=1

σ j(ez)z j−1

ρ(ez)
− 1

z
, z ∈ C. (8)

Furthermore define

A+ := {z|Re(µ(z)) > 0}, (9)
A0 := {z|Re(µ(z)) = 0}, (10)
A− := {z|Re(µ(z)) < 0}. (11)

An order star µ(z) of the second kind for a Brown (K, L) method is the partition of the complex plane
into the triplet {A+, A0, A−}.

Let D be the stability region of the numerical method, according Definition 1.1. Then we say that R is
A-acceptable and the related method is A-stable if {z ∈ C|Re(z) < 0} ⊂ D.

Definition 2.1 The index ι(z) of a point z ∈ A0 is defined as the number of sectors of A− adjoining z.

Let z ∈ A0 and p = ι(z) > 0. If µ is analytic at z and the point is approached by precisely p sectors of
A− and p sectors of A+, each of asymptotic angle

π

p
, then we say that z is regular.

The next result relates the order of the method to the number of sectors forming the regions A+ and A−.

Lemma 2.2 If the Brown (K, L) method has order p, then the origin is adjoined by p − 1 sectors of A+ and
separated by p − 1 sectors of A−. All these sectors approach the origin with asymptotic angle

π

p − 1
.

The proof can be found in Ref. [9].

The next result establishes the zero-stability of a (K, L) method through order stars.

Lemma 2.3 Brown methods are zero-stable if, and only if, all the poles of µ(z) reside in the closed left
half-plane and the poles along the imaginary axis are simple.

It is important to remember that, for the proofs of the above results, the use of the transformation
z → ln z is required. This maps, of course, the unit disk onto the left half-plane and the unit circle onto the
imaginary axis.
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The A-stability of a method or, equivalently, the A-acceptability of the approximation µ is given in the
following result:

Lemma 2.4 The approximation µ is A-acceptable if, and only if A− ∩ {iR} = ∅.

The proof can be found in Ref. [7].

The function µ(z) involves ez, which is periodic in the complex plane. Hence, both zeros and poles are
replicated by multiples of 2πi, and this creates obvious difficulties for zero and pole counting arguments. It
is therefore, necessary to restrict our attention to the region

J = {z ∈ C : | Im(z)| ≤ π}. (12)

Let us define the sets

J+ = {z ∈ J : Re(z) > 0} and J− = {z ∈ J : Re(z) < 0}. (13)

Finally, a closed curve in A0 will be called a loop.

Lemma 2.5 There exists ϵ ∈ R such that the set {z|Re(z) ≥ ϵ} ∩ J is contained in one of the sets A+ or A−:
if βL > 0 then it belongs to A+, otherwise it lies in A−.

The proof can be found in Ref. [10].

The next result defines the relative position between the zeros and poles of µ(z).

Lemma 2.6 Let δ be a loop such that δ ∩ ∂J = ∅ and δ ∩ J , ∅. Then, there is on δ exactly one pole
of µ between any two roots of µ(z) = 0. Moreover, if z0 ∈ int(J) is a pole of µ of multiplicity m then it is
approached by m sectors of A+ and m sectors of A− each with asymptotic angle of

π

m
.

Lemma 2.7 Let G be either a bounded A+-region or A−-region such that {R + iπ} ∩ cl(G) , ∅ and

x− = min{x ∈ R : x + iπ ∈ cl(G)} > −∞ (14)
x+ = max{x ∈ R : x + iπ ∈ cl(G)} < ∞. (15)

Let z0 ∈ ∂G ∩ int(J) be a zero of µ(z). Then

1. if G is a A−-region then either x−+ iπ is a pole of µ or there is a pole of µ along the positively oriented
portion of ∂G from x− + iπ to z0;

2. if G is a A+-region then either x++ iπ is a pole of µ or there is a pole of µ along the positively oriented
portion of ∂G from z0 to x+ + iπ.

Similar results are valid if R + iπ is replaced by R − iπ.

Lemma 2.8 Let z0 be a pole of µ(z) with multiplicity m. Then ι(z0) = m and z0 is regular.

Again, the proof of this result may be found in Ref. [7].
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3. ORDER STARS FOR THE BROWN (K, L) METHODS

For the BDF methods, we have

µ(z) =
σ(ez)
ρ(ez)

− 1
z

(equivalent to (8) with L = 1). (16)

For K = 2, this results in

µ(z) =

(
2
3 z − 1

)
e2z + 4

3 ez − 1
3

z
(
e2z − 4

3 ez + 1
3

) , (17)

and for K = 4,

µ(z) =

(
12
25 z − 1

)
e4z + 48

25 e3z − 36
25 e2z + 16

25 ez − 3
25

z
(
e4z − 48

25 e3z + 36
25 e2z − 16

25 ez + 3
25

) . (18)

Figures 1 and 2 display the order stars for the BDF methods with K = 2, 3, 4, 6, 7 and 9, respectively, in
the interval [−π, π]. The dark region represents A+ and the complementary area represents A−. In each of
these pictures the points in A0 are the poles of µ(z) and the point at the origin represents the principal root
of ρ(z) = 0, that is z0 = 1.

Figure 1: Order star of Brown (2,1), (3,1) and (4,1) methods, respectively

Figure 2: Order star of Brown (6,1), (7,1) and (9,1) methods, respectively

Observe that the order stars of each method has p − 1 = K − 1 sectors, where p = K is the order of the
method. For K = 2, A− ∩ {iR} = ∅ and for K ≥ 3, A− ∩ {iR} , ∅. Then, the BDF methods are A-stable only
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if K ≤ 2. For the point z0 = 0 we have ι(0) = K − 1, because p = K − 1 and K − 1 sectors of A− approach
z0 = 0. So, from Lemma 2.8 it follows that z0 = 0 is regular.

We know that the BDF methods are zero-stable only for K ≤ 6 (see Hairer and Wanner[11]). This fact
can be observed in Figures 1 and 2 by noting that the poles of µ(z), for K = 1, 2, 3, 4, 5 and 6, lie in the left
half-plane. For K = 7 and K = 9, for example, the methods are zero-unstable.

In the general case, the order stars for the Brown (K, L) methods will have K + L − 2 sectors of A− and
K + L − 2 sectors of A+ approaching the origin each with asymptotic angle of

π

K + L − 2
, as predicted by

Lemma 2.2, because these methods have order p = K + L − 1.

From Ref. [12] we know that

µ

(
1
ξ

)
=
σ

(
e1/ξ

)
ρ
(
e1/ξ) − ξ = σ

(
e1/ξ

)
− ξρ

(
e1/ξ

)
ρ
(
e1/ξ)

=

eK/ξ
(
β1 + β2

(
1
ξ

)
+ . . . + βL

(
1
ξ

)L−1
)
− ξ

(
α0 + α1e1/ξ + . . . + αKeK/ξ

)
α0 + α1e1/ξ + . . . + αKeK/ξ

=
β1 + β2

(
1
ξ

)
+ . . . + βL

(
1
ξ

)L−1 − ξ
(
α0

eK/ξ + . . . + αK

)
α0

eK/ξ + . . . + αK
. (19)

Then

lim
ξ→0
ξL−1µ

(
1
ξ

)
=
βL

αK
, (20)

implying that 0 is a pole of order L − 1 of µ
(

1
ξ

)
and z0 = ∞ is a pole of order L − 1 of µ(z).

So, from Lemma 2.8, ι(∞) = L − 1. Moreover,

ι(0) = K + L − 2 = (K − 1) + (L − 1). (21)

Then, (K−1)+ (L−1) sectors of A− approach the origin, where L−1 sectors are obtained from ι(∞) = L−1
(by Lemma 2.5, these sectors reside in the right half-plane and are unbounded) and K − 1 sectors reside in
the left half-plane, and contain the poles of the approximation µ(z) (by the Lemmas 2.6 and 2.7).

Figure 3: Order star of Brown (3,2), (4,2) and (5,2) methods, respectively

For example, in the case that L = 2, p = K + 1 and each order star has p − 1 = K sectors we obtain the
following. As ι(∞) = 1, there is one unbounded sector on the right half-plane. For K = 3, A− ∩ {iR} = ∅
and for K ≥ 4, A− ∩ {iR} , ∅. Then, the (K, 2) methods are A-stable only if K ≤ 3. The point z0 = 0 is an
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interpolation point of degree p = K because K sectors of A− approach z0 = 0. Moreover, ι(0) = K − 1. So,
from Lemma 2.8 it follows that z0 = 0 is regular. From Figures 3 and 4 it may be observed that the poles of
µ(z), for K = 3, 4, 5, 7 and 10, lie in the left half-plane. Then, these methods are zero-stable. For K = 11,
for example, the method is zero-unstable.

Figure 4: Order star of Brown (7,2), (10,2) and (11,2) methods, respectively

The Figure 5 show the order stars for other values of K and L.

Figure 5: Order star of Brown (7,3), (4,5) and (6,7) methods, respectively

4. TWO ASYMPTOTIC RESULTS

Two asymptotic results concerning zero-stability will be given. Although these were previously discussed
by Meneguette[4], order stars permit a much more concise proof.

Theorem 4.1 Let L be fixed. Brown (K, L) methods become zero-unstable for K sufficiently large.

Proof. Let

µ(z) =

L∑
j=1

σ j(ez)z j−1

ρ(ez)
− 1

z
, (22)

be the generating function of the order stars for the Brown (K, L) methods. Observe that ι(∞) = L − 1.
Then, for the (K, L) method,

ι(0) = (K − 1) + (L − 1) and ι(∞) = L − 1,
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and for the (K + 1, L) method,

ι(0) = K + (L − 1) and ι(∞) = L − 1.

This means that, as K increases, the number of loops (which support the zeros of ρ(z)) increases with K
and ι(∞) remains constant. If the (K, L) method are to be zero-stable then, by Lemma 2.3, the loops of the
order stars lie in the left half-plane. As the plane is divided by K + L− 2 sectors of A− and K + L− 2 sectors
of A+ (by Lemma 2.2), for a sufficiently large K, the loops cross the imaginary axis and then at least one
pole of µ(z) lies in the right half-plane. This characterizes a zero-unstable method.

If the loops in the right half-plane intersect with the left half-plane, when K increases, the loops cross
the region | Im(z)| ≤ π; but the poles of µ(z) lie in this region (by the Lemmas 2.6 and 2.7) and, consequently,
at least one pole lies in the right half-plane.

Theorem 4.2 Let K be fixed. The Brown (K, L) methods become zero-stable for L sufficiently large.

Proof. Let K be fixed and L sufficiently large. As K is fixed then the number of sectors containing poles
remains constant, because each one contains one distinct zero of ρ(z). On the other hand for the (K, L)
method,

ι(0) = (K − 1) + (L − 1) and ι(∞) = L − 1,

and for the (K, L + 1) method,
ι(0) = (K − 1) + L and ι(∞) = L.

Hence ι(∞) increases with L. As the plane is divided by K+L−2 sectors of A− and K+L−2 sectors of A+ (by
Lemma 2.2), then for sufficiently large L, the number of sectors from the positive x axis towards the y axis
increases (because these sectors reside in the right half-plane). Then, by increasing the number of sectors
related to the ι(∞) sufficiently, the poles will lie in the left half-plane. This characterizes a zero-stable
method.

If the loops in the left half-plane intersect with the right half-plane, when L increases, the loops cross
the region | Im(z)| ≤ π; but the poles of µ(z) lie in this region and, consequently, for L sufficiently large, the
poles will lie in the left half-plane.

5. CONCLUSION

This article has introduced order stars as applied to the Brown (K, L) methods. The order stars of a number
of Brown (K, L) methods have been computed and displayed pictorially. They then have been used to
establish, in a succinct manner, two asymptotic results originally due to Ref. [2].
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