Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Stochastic growth reduces population fluctuations in Daphnia-algal systems

Ananthasubramaniam, Bharath and Nisbet, Roger and Nelson, William and McCauley, Edward and Gurney, William (2011) Stochastic growth reduces population fluctuations in Daphnia-algal systems. Ecology, 92 (2). pp. 362-372. ISSN 0012-9658

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Deterministic, size-structured models are widely used to describe consumer-resource interactions. Such models typically ignore potentially large random variability in juvenile development rates. We present simple representations of this variability and show five approaches to calculating the model parameters for Daphnia pulex interacting with its algal food. Using our parameterized models of growth variability, we investigate the robustness of a recently proposed stabilizing mechanism for Daphnia populations. Growth rate variability increases the range of enrichments over which small amplitude cycles or quasi-cycles occur, thus increasing the plausibility that the underlying mechanism contributes to the prevalence of small amplitude cycles in the field and in experiments. More generally, our approach allows us to relate commonly available information on variance of development times to population stability