Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Highly polarized photonic crystal fiber laser

McNeillie, Fiona and Riis, Erling and Broeng, Jes and Folkenberg, Jacob and Petersson, Anders and Simonsen, Harald and Jacobsen, Christian (2004) Highly polarized photonic crystal fiber laser. Optics Express, 12 (17). pp. 3981-3987. ISSN 1094-4087

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We report on the design of a polarization maintaining, double-clad, Yb doped photonic crystal fiber and demonstrate its lasing properties. The polarizing properties of the fiber rely on birefringence and differential loss introduced by an anisotropic hole structure. Due to a slight leak from the core to the inner cladding only ~80% of the output light is in the core mode. We have demonstrated 2.9W of output in this mode with a polarization ratio in excess of 200:1.