Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Ultrafast dynamics in the dispersed phase of oil-in-water microemulsions: Monosubstituted benzenes incorporated into dodecyltrimethylammonium bromide (DTAB) aqueous micelles

Jaye, Andrew A. and Hunt, Neil T. and Meech, Stephen R. (2005) Ultrafast dynamics in the dispersed phase of oil-in-water microemulsions: Monosubstituted benzenes incorporated into dodecyltrimethylammonium bromide (DTAB) aqueous micelles. Langmuir, 21 (2005). pp. 1238-1243. ISSN 0743-7463

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Time-resolved optical Kerr effect spectroscopy has been used to probe the molecular environment afforded by the hydrophobic core of oil-in-water microemulsions. This was achieved by measuring the ultrafast dynamics of a series of benzene derivatives (benzonitrile, nitrobenzene, fluorobenzene, styrene, and toluene) incorporated as the oil phase within oil-in-water microemulsions and comparing them to the dynamics in neat liquid and the liquid diluted in nonpolar solvent. Polar and strongly interacting liquids (benzonitrile and nitrobenzene) showed dynamics in the microemulsion that are similar to those in the solution phase, while weakly interacting and mildly polar liquids (fluorobenzene, styrene and toluene) reveal dynamics more similar to those of the neat liquid. This suggests stabilization of the polar dispersed phase in polar regions of the micelle.