Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Relativistic plasma surfaces as an efficient second harmonic generator

Streeter, M. J. V. and Foster, P. S. and Cameron, F. H. and Borghesi, M. and Brenner, C. and Carroll, D. C. and Divall, E. and Dover, N. P. and Dromey, B. and Gallegos, P. and Green, J. S. and Hawkes, S. and Hooker, C. J. and Kar, S. and McKenna, P. and Nagel, S. R. and Najmudin, Z. and Palmer, C. A. J. and Prasad, R. and Quinn, K. E. and Rajeev, P. P. and Robinson, A. P. L. and Romagnani, L. and Schreiber, J. and Spindloe, C. and Ter-Avetisyan, S. and Tresca, O. and Zepf, M. and Neely, D. (2011) Relativistic plasma surfaces as an efficient second harmonic generator. New Journal of Physics, 13. ISSN 1367-2630

[img]
Preview
Text (Streeter-etal-NJP-2011-Relativistic-plasma-surfaces-as-an-efficient-second-harmonic-generator)
Streeter_etal_NJP_2011_Relativistic_plasma_surfaces_as_an_efficient_second_harmonic_generator.pdf - Final Published Version
License: Creative Commons Attribution-NonCommercial-ShareAlike 3.0 logo

Download (1MB) | Preview

Abstract

We report on the characterization of the specular reflection of 50 fs laser pulses in the intensity range 10(17)-10(21)Wcm(-2) obliquely incident with p-polarization onto solid density plasmas. These measurements show that the absorbed energy fraction remains approximately constant and that second harmonic generation (SHG) achieves efficiencies of 22 +/- 8% for intensities approaching 10(21)Wcm(-2). A simple model based on the relativistic oscillating mirror concept reproduces the observed intensity scaling, indicating that this is the dominant process involved for these conditions. This method may prove to be superior to SHG by sum frequency mixing in crystals as it is free from dispersion and retains high spatial coherence at high intensity.