Picture of server farm and IT infrastructure

Where technology & law meet: Open Access research on data security & its regulation ...

Strathprints makes available Open Access scholarly outputs exploring both the technical aspects of computer security, but also the regulation of existing or emerging technologies. A research specialism of the Department of Computer & Information Sciences (CIS) is computer security. Researchers explore issues surrounding web intrusion detection techniques, malware characteristics, textual steganography and trusted systems. Digital forensics and cyber crime are also a focus.

Meanwhile, the School of Law and its Centre for Internet Law & Policy undertake studies on Internet governance. An important component of this work is consideration of privacy and data protection questions and the increasing focus on cybercrime and 'cyberterrorism'.

Explore the Open Access research by CIS on computer security or the School of Law's work on law, technology and regulation. Or explore all of Strathclyde's Open Access research...

Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for non-equilibrium gas flows

Meng, Jian-Ping and Zhang, Yonghao (2011) Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for non-equilibrium gas flows. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 83 (3). Article 036704. ISSN 1063-651X

[img]
Preview
PDF (Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows)
Zhang_YH_Pure_Gauss_Hermite_quadratures_and_accuracy_of_lattice_Boltzmann_models_for_non_equilibrium_gas_flows_14_Mar_2011.pdf
Preprint

Download (278kB) | Preview

Abstract

Recently, kinetic theory-based lattice Boltzmann (LB) models have been developed to model nonequilibrium gas flows. Depending on the order of quadratures, a hierarchy of LB models can be constructed which we have previously shown to capture rarefaction effects in the standing-shearwave problems. Here, we further examine the capability of high-order LB models in modeling nonequilibrium flows considering gas and surface interactions and their effect on the bulk flow. The Maxwellian gas and surface interaction model, which has been commonly used in other kinetic methods including the direct simulation Monte Carlo method, is used in the LB simulations. In general, the LB models with high-order Gauss-Hermite quadratures can capture flow characteristics in the Knudsen layer and higher order quadratures give more accurate prediction. However, for the Gauss-Hermite quadratures, the present simulation results show that the LB models with the quadratures obtained from the even-order Hermite polynomials perform significantly better than those from the odd-order polynomials. This may be attributed to the zero-velocity component in the odd-order discrete set, which does not participate in wall and gas collisions, and thus underestimates the wall effect.