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Abstract. This paper demonstrates innovative techniques for estimating the tra-
jectory of a soccer ball, using fixed cameras with constant calibration parame-
ters. In contrast with broadcast coverage, for fixed camera data, the ball is often 
rendered with poor resolution away from the image centre. The rapidly moving 
ball is subject to motion-blur, caused by finite shutter speeds and interlaced 
fields, resulting in variable shape, size and colour. The velocity estimated from 
Kalman tracking is used in both normalising ball size and filtering the ball from 
false alarms. Furthermore, occlusion-reasoning and tracking-back methods are 
utilized to estimate its position when it is occluded, and also to remove false 
alarms. Finally, temporal hysteresis based thresholding of the ball likelihood is 
applied for trajectory filtering to improve the robustness and continuity of the 
tracked ball. Promising experimental results from several long sequences are 
reported.  

1   Introduction 

The convergence of computer vision and multimedia technologies has led to opportu-
nities to develop applications for automatic soccer video analysis, including content-
based indexing, retrieval and visualization [1-3]. Through image and motion analysis, 
additional information can be extracted for better comprehension of video and sports 
contents, such as video content annotation, summarization, team strategy analysis and 
verification of referee decisions, as well as further 2-D/3-D reconstruction and visuali-
zation [4-9].  

In a soccer match the ball is invariably the focus of attention. Although players can 
be successfully detected and tracked on the basis of colour and shape [1, 3, 6, 9], simi-
lar methods cannot be extended to ball detection and tracking for several reasons:  

• The ball is very small and moves fast, and consequently exhibits it usually has 
irregular shape, various size and unstable colour when moving in different ve-
locities (see examples in Fig 1); 

• It is hard to identify a ball as it is frequently occluded or possessed by players;  
• There are many false alarms similar to the ball, such as small regions near the 

field lines and regions of players’ bodies. 
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Fig. 1. Ball samples in different size, shape and colours from same image sequences: 
(a) to (d) are balls of static, slow, medium and fast moving, respectively. 

 
Generally, TV broadcast streams and video sequences from fixed cameras are the 

most common sources of soccer videos. In TV streams, the ball is mostly of good reso-
lution in the image centre. However, due to complex camera movements and partial 
views of the field, it is hard to obtain accurate camera parameters for on-field ball 
positioning. In Gong et al [1], white colour and circular shape are employed to detect 
balls in image sequences. In Yu et al [8], candidate balls are first identified by size 
range, colour and shape, and further verified using motion information obtained from a 
Kalman filter. In Yow et al [2], ball detection is completed by template matching in 
each of the reference frames and then the ball is tracked between these frames. In Seo 
et al [6], template matching and Kalman filter are used to track balls after manual 
initialization. Since colour and shape varies considerably in soccer games (see Fig. 1), 
these methods seem unlikely to provide robust solutions. 

Using multiple fixed cameras has the advantage that calibration is easier to establish 
and that accurate on-field positions can be extracted for visualization. Bebie and Bieri 
[4] and Matsumoto et al [5] used two and four cameras in their systems for soccer 
game reconstruction and optimized viewpoint determination, respectively. Ohno et al 
[9] adopted eight cameras arranged on both sides of the field to attain full view of the 
game. Although motion-based tracking models are introduced in [4] and [9], there is 
no given process to automatically identify the ball before tracking. In Matsumoto et al 
[5] and D’ Orazio et al [7], template matching and a modified Hough transform are 
presented to detect balls in soccer videos respectively. Since irregular ball shapes are 
usually extracted in different velocities, these two methods are still insufficient.  

In this paper, a comprehensive model based method is proposed for ball detection 
and tracking from real soccer sequences. The main highlights of our method can be 
summarized below. Firstly, ball classification is performed on the Kalman tracked 
segmented objects which allows velocity information to be employed in the classifica-
tion stage. Secondly, the expected appearance of a moving ball is explicitly modelled 
to improve the ball classification process. Thirdly, occlusion-reasoning and tracking-
back is employed to recover any ball merged with players as well as to remove false 
alarms. Finally, temporal hysteresis based thresholding of the ball likelihood is used to 
further improve the robustness and continuity of the tracked ball.  



2   Detecting and Tracking of Moving Objects 

Image differencing is utilized for moving object detection followed by Kalman filter 
based tracking in the field of view (FOV) of each individual camera.  For robustness, a 
two-stage adaptive background model is applied. In the first stage, a per-pixel Gaus-

sians mixture model [14, 17], ( ))()()( ,, l
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where ρ  is the updating rate satisfying ( )1,0∈ρ . For unmatched distributions, the 

parameters remain the same but the weights decrease. The initial background image is 
selected as the distribution with the greatest weight at each pixel. 

In the second stage, this initial background image is continuously updated using a 
faster running average algorithm for efficiency [15]: 
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where 10 <<<<< HL αα . This method helps to slowly update the background image 

even in foreground regions. 
Given the input image kI , we can decide the foreground binary mask kF  by com-

paring |||| 1−− kk �I  against a threshold. From the foreground masks, we can obtain a 

series of foreground regions representing candidate objects after a connected compo-
nent analysis and thresholding by size. Each foreground region is represented by its 
centroid, bounding box and area. An image-plane Kalman tracker is used to filter 
noisy measurements and split merged objects, in which the state Ix  and measurement 

Iz  are given by: 

T
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T
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where ),( 00 cr  is the centroid, ),( 00 cr &&  is the velocity, ),( 11 cr  and ),( 22 cr  are the top-

left and bottom-right corners of the bounding box, respectively ( 21 rr <  and 21 cc < ); 

),( 11 cr ∆∆  and ),( 22 cr ∆∆  are the relative positions of ),( 00 cr  to ),( 11 cr  and ),( 22 cr .  

The state transition and measurement equations in the Kalman filter are: 
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where Iw  and Iv  are the image plane process noise and measurement noise, and IA  

and IH  are the state transition matrix and measurement matrix, respectively. Given 

T∆  as the time interval between two successive frames (for image formation), we 
have IA  and IH  defined as 
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The Mahalanobis distance is used to associate each observation to (at most) one 
tracked object, in which several states are defined to identify different cases. These 
states include new, normal, merged, missing and terminated, which are defined in the 
following process: For each existing tracked object, if it has corresponding observation 
matched, we define it in normal state. Otherwise, it is marked as missing and updated 
by predicted state estimation. If an object has been missing for more than M  frames, 
it is terminated. All unmatched observations are identified as new objects in tracking. 
If different objects share common regions in their bounding boxes, they are merged. 
Moreover, we define age as the frames that an object has been tracked, and a new 
object should have its age as 1. Detail on splitting objects when their bounding boxes 
are merged together can be found in [18]. 

 

 

Fig. 2. Examples of forty seconds of tracking data, in which time t moves from left 
to right, and the horizontal image co-ordinates of the object centroids, c0, is plotted up 

the y-axis.(The vertical image co-ordinate is omitted from this diagram). 



 
Fig. 2 plots the 

0c  trajectories of multiple objects from frame 1000 to 2100 in cam-

era sequence 1. Using the Tsai’s algorithm for camera calibration [17], the measure-
ments are transformed into world co-ordinates, using the provisional assumption that 
the object is located on the ground plane. A measurement in world co-ordinates is 
defined as T

i ahw ][=m , where hw,  and a  are object’s width, height and area 

calculated by again assuming it is touching the ground plane.  
Except for the ball and players, Fig 2 also contains trajectories from false alarms 

caused by field line noise and partial body of players, etc (see Fig 3 below). In the next 
Section, we will discuss the process to filter the ball from players and other false 
alarms. 
 

Fig. 3.  Enlarged images of detected moving objects in different colour boxes with 
the ball (in white), players (in blue), and false alarms (in red or yellow).  

3   Filtering of the Ball Trajectory  

Domain knowledge including colour, ball shape and pitch geometry are widely 
adopted in soccer and other sports video analysis systems [1-3, 5, 7-9, 13]. Using the 
closed captions, audio, slow-motion replays and special zoom, more specific models 
could be explored in shot detection and semantic indexing of broadcast data [3, 10-13]. 
However, for analyzing real soccer sequences we need to explore some new spatial-
temporal constraints for filtering the ball. 

3.1   Forward Filtering  

After tracking, in each frame every tracked object is assigned with a tracking state, an 
age and an estimated velocity vector. In our ball filtering process, velocity and longev-
ity features, along with size and colour, are employed to discriminate the ball from 
other objects. Owning to motion effect, a moving ball usually appears larger than a 
static one. Let us suppose the ball has a constant velocity during image formation, the 
detected width w  and height h  in frame n  satisfy 
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where 0w  and 0h  are the stationary width and height of the detected ball, and T∆  is 

the temporal aperture. 
Each segmented object oi is assigned a likelihood of being the ball by an operator 

]1,0[)( ∈ioD  using the object’s absolute velocity 
iv  and longevity in  as below:  
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where maxv  is the maximum absolute velocity of all the objects (including the ball and 

non-ball objects), and 
0T  is a constant. Typically the moving ball moves more quickly 

than players and is often the fastest moving object. The bias D1(oi) is defined as 
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where ],[)( 21 xxxR =  specifies an allowed range of x . Furthermore, a  and c  are 

area and ball colour percentage, respectively.  

 

Fig. 4. Filtered results of the data in Fig 2, in which green and blue part of trajecto-
ries are results of higher or lower ball likelihood, respectively. 

 
In fact, equation (10) is used to extract a near circular ball candidate of its size and 

colour within valid ranges. The results of filtering the trajectories shown in Figure 2 



using equations (9) and (10) are presented in Fig. 4. Blue trajectories are those of tra-
jectories whose likelihoods are between 0.5 and 0.65, while green ones trajectories are 
those with likelihoods higher than 0.65. Moreover, in one certain frame we may find 
several green or blue trajectories. This happens due to occlusion or false alarms and 
will be resolved in Section 3.2. 

3.2   Occlusion Reasoning and Tracking-back 

To resolve the uncertainties within the filtered ball trajectories, occlusion reasoning 
is applied based on tracking states obtained from Kalman filter. Assume a candidate 
ball iB  is occluded at frame n (merged with a non-ball object jP ). Thus iB  can be 

moving or possessed. It may be defined as moving if a new ball candidate can be de-

tected near jP  within 0n  frames since it was merged. Otherwise, it should be defined 

as possessed by jP . Therefore, a buffer is introduced to store the tracking states before 

finally determining the real ball trajectory. If we find it is still merged at frame 
# )( nn ∆+ , where 0nn >∆ , then tracking-back is employed to reclassify the state of 

frame # )( nn ∆+  (and those after frame #n) as possessed.  

In addition, each new ball candidate is also examined by tracking-back process, as 
we assume there should be at least one player jP  accompanied this ball nearby. Thus a 

new ball should always come from a player who possessed it; otherwise it must be a 
false alarm. Moreover, if a candidate ball has an age less than a given threshold, say 4 
frames, it is also considered as a short-lived false alarm (caused by inaccurate fore-
ground detection, see examples in Fig 3).  

 

 
Fig. 5. Partial view of final estimated ball trajectories after tracking-back, green and 

blue part of trajectory is of higher and lower likelihood, respectively. 
 
Finally, tracking-back also applies temporal hysteresis-based thresholding [16] of 

the ball likelihood along the trajectory. Here, we have three thresholds, 321 ,, hhh , 

where 321 hhh >> . Candidates with a likelihood above 1h are unequivocally desig-



nated a ‘ball’ label; and candidates with a likelihood below 3h  are unequivocally clas-

sified as ‘non-ball’ (i.e. false alarms). Candidate objects with likelihood l  satisfying 

21 hlh >>  are relabelled as a ‘ball’ if the object as been labelled as a ball in a 

neighbouring frame (along the tracking history). Similarly, objects with likelihood l  
satisfying 32 hlh >>  are labelled as ‘not ball’ if the object has that label as a ball in a 

neighbouring frame (along the tracking history).  
The result of this temporal hysteresis tracking-back procedure is a considerable im-

provement in the robustness of detection and continuity of trajectories. Comparing the 
final ball trajectory in Fig 5 with those trajectories of both players and the ball in Fig 2 
clearly demonstrates that tracking-back has effectively recovered the ball positions 
even when it is occluded (being possessed with players). At the same time, false alarms 
are dramatically reduced. 

4   Results and Discussions 

The proposed algorithm has been tested on several sequences captured from fixed 
cameras around a football stadium. To quantitatively evaluate our method, detected 
ball positions are compared with manual ground truth (GT) data, which includes im-
age-plane bounding box of the ball and the centroid. In the whole sequence, those 
frames containing the ball are labelled, and whether the ball is isolated from players 
are also marked. For three sequences of 4800 frames each, we have totally about 6700 
ball positions defined in the GT data. Fig. 6 gives examples of two ball trajectories 
tracked from two different sequences. 

When there is no buffering and tracking-back, we can only detect about 48.1%, 
46.1% and 46.6% ball positions from the three sequences, respectively. However, in 
each sequence more than 80% of the isolated balls can be successfully identified dur-
ing the tracking. When the tracking-back is introduced with a buffer of 25 frames, the 
detection rate improves by 28% or more for each sequence, in which about 37% addi-
tional merged ball can be successfully recovered. When the buffer size increases to 50 
frames, nearly 80% of the ball positions are localised.  

The tracked rates under different buffer size are compared in detail in Table 1, and 
it seems that 50 frames of buffering is a good trade-off between correct tracking rates 
and the need for short latencies in a live stream. At each frame, we define tracked rate 
of a ball by comparing the common area of the bounding boxes from its observation 
and the ground truth. Let )(⋅Area  specify the corresponding bounding box, and the 

tracked rate R  is then defined as 
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where nb  is the ball under tracking and ng  is the corresponding ground truth at frame 

# n .  



 
Fig. 6. Examples of two image-plane ball trajectories from Seq #2 (top) and  

Seq #3 (bottom), respectively. 
 

 
Table 1. Tracked rate of the ball under various buffer size for tracking-back 

                Buffer size 
Sequence 

None 
buffering 

25 
frames 

50 
frames 

75 
frames 

100 
frames 

Separated ball 82.5% 86.8% 88.0% 88.4% 88.6% 
Merged ball 26.6% 62.9% 68.4% 70.7% 71.1% 

 
Seq #1 

Overall 48.1% 76.3% 79.1% 79.4% 79.6% 
Separated ball 81.4% 84.2% 85.3% 85.7% 85.9% 
Merged ball 22.9% 60.5% 64.8% 65.7% 66.3% 

 
Seq #2 

Overall 46.1% 73.8% 77.1% 77.7% 77.8% 
Separated ball 81.7% 86.8% 87.9% 88.3% 88.5% 
Merged ball 24.3% 63.2% 66.1% 67.7% 68.2% 

 
Seq #3 

Overall 46.6% 75.1% 78.6% 78.9% 79.2% 
 
Let us suppose there are totally M  ball positions in a given sequence amongst 

which we have 1M  frames in which the ball appears separately while in the other 

frames the ball is merged. We define the overall tracking accuracy as the tracked rates 
of both separated ball and merged ball weighted by their frequency of occurrence. 
Taking the distance between the centriod of the detected ball and the centriod of the 



bounding box in GT data as an error measurement, we can further evaluate the accu-
racy of the tracked ball. Fig. 6 illustrates two ball trajectories (a) with average tracking 
accuracy (b), from which we can see that about 91% of the ball positions are tracked 
within 6 pixels spatial deviation. 
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Fig. 7. Accumulative probability of average tracking accuracy (left) and its  
probability density function (right) 

5   Conclusions 

We have proposed a novel method for soccer ball detection and tracking from real 
video sequences. We found that using motion information and modelling the expected 
appearance of a moving ball significantly improves the detection accuracy. The appli-
cation of an occlusion-reasoning process based on tracking-back and temporal hystere-
sis-based thresholding of ball likelihoods is essential to improve the tracking robust-
ness and continuity of the ball trajectory. The effectiveness of the tracking-back ap-
proach is dependent on the size of the buffering. By comparing results for different 
buffer sizes and appropriate trade-off between the accuracy and latency is also sug-
gested. Future work will investigate more accurate modelling and recognition of oc-
cluded balls as well as 3-D positioning and soccer event understanding. 
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