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 Abstract— Shot boundary detection (SBD) plays important 

roles in many video applications. In this paper, we describe a 

novel method on SBD operating directly in compressed domain. 

Firstly, several local indicators are extracted from MPEG 

macroblocks, and AdaBoost is employed for feature selection and 

fusion. The selected features are then used in classifying candidate 

cuts into five sub-spaces via pre-filtering and rule-based decision 

making. Following that, global indicators of frame similarity 

between boundary frames of cut candidates are examined using 

phase correlation of DC-images. Gradual transitions like fade, 

dissolve and combined shot cuts are also identified. Experimental 

results on the test data from TRECVID’07 have demonstrated the 

effectiveness and robustness of our proposed methodology. 

 

Index Terms— shot boundary detection, TRECVID, video 

segmentation, decision making, video signal processing. 
 

I. INTRODUCTION 

HOT boundary detection (SBD) is the fundamental task in 

content-based analysis, indexing and retrieval of videos,  as 

it helps to provide a hierarchical structure of video and enables 

extraction of meaningful highlights from such a structure [1-4]. 

As a result, it has continuously attracted extensive attentions on 

this topic, which was also one of the motivations for the 

well-known TREC Video Retrieval Evaluation (TRECVID) 

activity, providing objective samples as a common platform on 

SBD and other video processing tasks [5]. 

In general, there are at least two steps for shot boundary 

detection, i.e. extracting features in either compressed or 

uncompressed domain to construct dissimilarity metrics 

between adjacent frames, and making decisions based on these 

metrics. In uncompressed domain, frame difference is usually 

measured using pixel difference [4], histogram [1, 11], texture 

or edge [11], motion [10, 15], and frame correlation [3]. In 
compressed domain, the most frequently used features are DC- 

image [12], macroblock types [14], edges [13] as well as DCT 

coefficients, motion vectors and bit-rate information [4, 6].  

With extracted features, a continuity signal can be 

constructed using pair-wise comparison or temporal filtering 
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[1]. Afterwards, shot changes are determined in several ways, 
including thresholding [14], (fuzzy) decision making [11], 

machine learning, clustering [1, 10], mutual information [9], 

and model-based approaches [8, 13]. Since modeling and 

statistical analysis usually needs some prior knowledge and 

assumptions such as shot length [7, 10, 13], they may produce 

unsatisfactory results if these assumptions cannot be met. 

In this paper, detailed techniques used for our submission 

to TRECVID 2007 on SBD are presented, in which our main 

contributions can be highlighted as: (i) By extracting several 

novel features as local content indicators, robust shot detection 

is achieved in a very small set of selected features; (ii) By 

categorizing shot cuts into five classes, abrupt shot changes and 

several gradual transitions are effectively detected; (iii) A fast 

implementation of such a system is presented that fully operates 

in compressed domain. Evaluation results by TRECVID test 

data indicates that our method achieve the best results on cut 

detection, sixth best on gradual transition detection, and third 
best on overall performances among all participation teams 

worldwide. Such evaluation also supports that our method is 

effective and robust on a wide range of video sources.  

II. FEATURE EXTRACTION AND SELECTION 

Unlike most of the existing techniques working in 

pixel-domain or directly on DC-images, our proposed method 

defines features via statistical analysis of the difference 
between two consecutive DC-images as discussed below. 

A. Feature Extraction 

First of all, DC-images are extracted from each input frame 

if  in MPEG videos, which provides a low-resolution version 

of the original frame for further analysis. Let 
)()( , i

dc

i

dc UY  and 

)(i

dcV  be the corresponding DC-images of the luminance and 

chrominance components , a DC-differencing image between 

the 
thi  frame and the 

thi )1(   frame can be defined below: 
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For each )(iD , its mean and standard derivation are 

determined as )(i
 
and )(i . Further, we define )(1 ip

 
and

 
)(2 ip

 
as two proportions representing the percentage of 

pixels in )(iD  that are larger than two thresholds )(1 i
 
and 

)(2 i , where 4/)()(2 ii  
 
and

 
5.0)()( 21  ii  . As 

)()( 21 ii   , we have )()( 21 ipip  . Since )(1 i and 
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)(2 i are dependent on )(i , they present an adaptive 

thresholding mechanism, which makes )(1 ip  and )(2 ip  

robust to the luminance changes across frames inside shot cuts.  

In addition, a motion prediction error )(ierr  is defined 

for the i
th
 frame as given below, where iN  is the number of 

non-intra coded blocks. Also we define a normalized energy 

)(iEy  in which 
yE _0

 is the maximum value of energy in Y 

component and yN  is the number of  DC-coefficients in 
)(i

dcY . 

i
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B. Feature Selection 

To optimally choose a group of features for cut detection, 

we employed AdaBoost [16] to exploit its power in 

classification and optimization. In addition to the described 

features including )(i , )(i , )(1 ip , )(2 ip  and )(ierr , 

five traditional features are also extracted including indicators 

of luminance, color, motion magnitude, edge and inter-frame 

differences. In our system, a 5-fold cross-validation process is 

employed, using the test data from TRECVID in 2006 and 2005 

with manual ground truth maps for training purposes.  

Our test results are summarized into three groups as 

illustrated in Table 1, where the first two tests use a temporal 

window of 11 frames and the third uses a window of 3 frames. 

While our selected features have indeed produced improved 

results even with much lower dimensions, it is still very 

difficult to accurately characterize all the cuts, due to the fact 

that cuts in reality present a wide range of inconsistent visual 

appearances. To this end, we propose to classify cuts into a 

number of categories with relatively consistent visual 
appearances so that more accurate characterization within each 

individual category of cuts can be achieved.  

 

Table 1.  Performance comparison using AdaBoost based  

cross validation on the data from TRECVID in 2006 and 2005. 

Experiments Test 1 Test 2 Test 3 

Feature Dimension 10*11 5*11 5*3 

Average recall  0.9709 0.9718 0.9716 

Average precision 0.9702 0.9706 0.9705 

III. MODELING AND SHOT BOUNDARY DETECTION  

In this section, cut detection is modeled as a process of 

decision-making, where cuts are categorized into five 

sub-spaces according to their visual appearances. As a result, a 
coarse-to-fine process is employed for the SBD as follows.  

A. Modeling  

If we take the cut detection problem as a process of 

decision making, then we have one feature space   and one 

decision space  . Let 
 
be the decision-making process, we 

should simply have  )( . Since cuts may have various 

appearances under different contexts, the feature space 
 
is 

further divided into K  sub-spaces, namely 
k   and 

nmifnm   . In fact, we have 5K  in 

our implementation, leading to ]5,1[|  kk , where 

kk  )(  and each k  can be taken as one category of 

cuts which has its own characteristics of visual appearances. 

In 1  and 2 , two boundary frames of a cut almost 

share nothing in both background and foreground. The 

difference between these two is that, in 1  , we can find very 

large change of intensity in frame images while in 2  the 

intensity change is limited, although some color difference may 

be apparent. These cuts should appear as a peak of )(i  and 

)(i . Consequently, we expect a large peak for cuts in 1 . In 

3 , there is a relative large part of common background or 

foreground during shot changes, which will inevitably lead to 

lower difference of the two boundary images. Therefore, lower 

peaks of )(i  and )(i  are expected.  

4  characterizes those shot boundary changes, where a 

shot cut is followed by sudden intensity changes such as the 

effect of flash lighting etc. This will lead to a large peak of 

)(i , )1()(  ii  , )(i
 
< )1( i , and large 

prediction errors satisfying )1()()1(  ierrierrierr . 

Finally, 5  contains shot changes followed by strong motions, 

which are reflected by large frame differences across several 

frames, indicated by a peak of )(i  and a large )1( ierr . 

Under this circumstance, the value of )(i does not generally 

present any apparent peak. 

B. Pre-filtering of Cuts  

Pre-filtering is to remove those frames with very limited 

changes, which are considered as non-cuts from its neighbors, 

in order to achieve high level of efficiency and robustness for 

shot cut detection. Since a cut often causes an overall change of 

the visual content inside boundary frames, such changes will 

inevitably lead to a larger value of )(i  . Yet due to the fact 

that certain level of consistency is maintained between 

differential frame pixels, the value of )(i  is relatively small. 

As a result, we propose to use the condition, )()( ii    
where 1 , as the first step for the pre-filtering process.  

As for )(1 ip and )(2 ip , they are mainly used to represent 

the percentage of active (changed) blocks in frames. When a cut 

occurs, there should be a large percentage of changed areas 

across neighboring frames. As a result, we use two condition 

tests to remove those non-cuts frame differences. The first 

condition is: 02 )( pip   where )1,0(0 p  , which specifies 

a minimum requirement of the changed macroblocks. Although 

)()( 21 ipip  , )(1 ip and )(2 ip  should be close to each other 

and this is constrained by )()( 21 ipipc   where 1c  .  
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Further, cuts generally satisfy )(2 ip  is greater than both 

 12 ip  and  12 ip , which indicate stronger block 

changes at the current frame, where cut occurred, than its 

neighboring ones. Considering the effect of noise such as 

motion and lighting changes, however, some cuts may not 

necessarily produce sufficiently large block changes. To this 

end, the condition below is used to complete the pre-filtering.  

))1(),1(max()( 222  ipipipc  

C. Decision Rules for the Five Categories of Cuts 

Most existing work detects cuts via thresholding peak 

values of certain features such as )(i and )(i . However, 

such technique often fails to achieve sufficient robustness, 

especially in cases where cuts do not generate sufficiently 

strong block changes. Therefore, we propose to measure their 

relative peak values as a changing ratio with respect to that of 

its neighboring frames to complete the cut detection as follows.  

))1(/)(),1(/)(min()(min  iiiii 

 
(4) 

))1(/)(),1(/)(min()(min  iiiii 

 
 (5) 

where 1)(min i  and 1)(min i  represent a peak of )(i  

and )(i , and their values are good indications to show the 

strength of sudden changes between the current frame and its 

neighboring frames included in a cut transition.  

As larger values of )(min i , )(min i  and )(2 ip  are 

more likely to indicate a potential cut, three likelihoods of cuts, 

)(, ki ,  )(, ki  and )( 2, pki , are extracted below: 

1

min, )]()([1)(  ikki          (6) 

1

min, )]()([1)(  ikki          (7) 


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2

2

2,
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kip
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where parameters )(k  and )(k  are used to characterize 

the visual appearances of cuts within each likelihood. In (8), 

likelihood is designed in consideration of individual features 

across all five categories, where    )(22, ippki   is required 

to establish the likelihood for cuts in 4  and 5 . This is due 

to the fact that both 4  and 5 often contain more active 

blocks to indicate a cut. Yet for other three categories, 

  )(22, ippki   is sufficient to yield similar likelihood.  

Through weighting of these three separate likelihoods, a 

combined likelihood ),( ki  is obtained below:  

3/)]()()([),( 2,,, pki kikiki   
  

(9) 

Given the combined likelihood values, ),( ki , the 

category of the maximum likelihood is determined as: 

]5,1[|),(maxarg0  kkik
k

        (10) 

A candidate in category 0k  is detected as a cut if we 

have 00 ),(  ki , where )1,0(0   is a constant threshold.  

Otherwise, it is a false alarm. Here we choose a relatively small 

0 to allow most possible cuts to be detected as they will be 

further validated in the next section.  

Regarding )(k , it is determined as follows. Due to the 

apparent luminance changes, there exists a very large peak of 

)(i  in 1  but relative small peaks in 2 , 3  and 5 . 

Therefore, to obtain a high likelihood )(, ki , 1)1(   is 

sufficient for 1 . For 2 , 3  and 5 , however,  is 

decided as:   t )5()3()2(  and 1t .  

For cuts in 4 , )4(  is determined in a way to exploit 

the fact that )1()()1(  ierrierrierr , and both 

)(i and )1( i  are larger than )1( i , as suggested by 

its definition. Hence we have  1)()4( _  ierr    and 

larger )4(  will lead to higher cut likelihood of )(4, i . 
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For )(k , it is determined to enable )(, ki  to have 

appropriate likelihood values for all five cut categories below:   
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where 1t  for cut category 1 , 3
 
and 4  in order to 

maintain a high likelihood value in (7); )2(  is defined as 

such that a smaller value of )(/)( ii  can be expected. To 

derive a high likelihood for 5 , we expect large differences in 

both motion prediction error )(ierr  and the standard 

derivation )(i , according to the definition of 5  . 

D. Validation of Detected Cuts 

For motion caused scene changes, as an example, although 

they may have large )(i  and )(i   making it like a real cut, 

the overall similarity of the two frames is still high. In contrast, 

the boundary frames of a real cut remains to be dissimilar. 

Therefore, the similarity of boundary frames can be used as a 

good indicator to validate our detected cuts. Among many 
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techniques proposed in measuring such a similarity, we propose 

to use phase correlation on extracted DC-images to validate the 

detected results for both efficiency and robustness.  

E. Detecting Gradual Transitions 

After cut detection, we need to identify boundaries of 

gradual transitions within each pair of neighboring cuts. 

Techniques on detection of gradual transitions including fades, 

dissolves and combined shot cuts are discussed below.  

From instructions given by TRECVID’07, combined cuts 
are defined to contain cuts and a series of monochrome (black 

or white) frames, and they can be classified into two parts, i.e. 

normal cuts in the boundary and monochrome frames in the 

middle. To detect such patterns, frame energy is found to be 

sufficient to complete the detection due to the fact that the 

energy among all monochrome frames present little changes in 

the transition, yet in the boundaries, the energy presents 

dramatic changes with either very large or very small values.  

Detection of dissolves mainly relies on identification of a 

downward-parabolic or a U-shape pattern [1]. In real situations, 

however, such detection is inaccurate and lack of robustness 

since the U-shape is often distorted by the noise. Since a 

dissolve contains information from two different frames, a high 

motion prediction error )(ierr and a large value of )(i  in 

corresponding frames can be expected. Therefore, candidates 

for dissolves can be detected via thresholding both )(ierr  and 

)(i . Their validation as detected dissolves can be completed 

by measuring the similarity between boundary frames.  

As for the event of fade, it is detected only if a fade-out 

event is followed by a fade-in, i.e. fade out/in (FOI). During 

such a FOI process, one apparent appearance is the change of 

luminance, where its intensity values present a clear V-shape. 

As a result, the left and right sides of this V-shape are detected 

as fade out and fade in, respectively. 

F. Determining Parameters 

In the following, we will discuss how the parameters in our 

algorithm are determined. Taking 0p  in pre-filtering of cuts as 

an example, firstly the probability density functions (PDFs) of  

)|( 2 cutpp  and )|!( 2 cutpp  are extracted from the training 

set. Then, an overall cost of error classification )( 0p is 

obtained where a larger   may help to obtain a smaller 0p .  
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As our strategy is to make all real cuts above the selected 

threshold, we intend to choose a larger   to generate a smaller 

0p  to reduce missed cuts.  Hence parameter   is decided by:  



 




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


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)'()'(

)'(

00

0

papa

pa

cc

c
     (14) 

where cp and cp  satisfy %1)()(  cccc papa  and 

2/)('0 cc ppp  . When 1 , we have smaller 

missing rate  )( 0pac  but larger false alarm rate )( 0pac . 

In contrast, 1  leads to a larger missing rate and smaller 

false alarm rate. To obtain smaller missing rate, we select 

5.0  to determine all relevant parameters.  

IV. RESULTS AND DISCUSSIONS 

In this section, comprehensive comparisons of experimental 

results are discussed under TRECVID framework to verify our 

methodology in detecting both cuts and gradual transitions.  

A. Data Preparation 

Unlike news video used in previous years, test data in 

TRECVID’07 covers a wide range of sources including news, 
documentaries, educational programmes, and archived videos 

in black and white [5]. The 6-hour data in MPEG-1 format is 

selected from 400-hour video sources containing 2320 shots in 

17 sequences. For quantitative evaluation, manual ground truth 

(GT) data is provided. It is worth noting that errors are likely in 

the provided GT data and controversy maybe inevitable, and 

this is mainly due to (i) unclear boundary of some special 

editing effects and (ii) time-consuming and labor intensive 

efforts required in producing such GT.  

B. Overall Performance and Evaluation 

There are three measurements used in evaluating the results, 

i.e. recall and precision rate of cut detection, gradual transition, 

and overall performance. Each approach has up to 10 runs with 

various parameters to form a precision versus recall curve, and 

different approaches are compared accordingly. Also, a 

combined measurement of both precision and recall, 1F  , is 

defined below to rank the performance of different algorithms.  

precisionrecall

precisionrecall
precisionrecallF






2
),(1  .  (18) 

In 2007 there are 35 teams registered for SBD task, and 

eventually only 15 teams have their results submitted as 128 

runs. According to the report from TRECVID’07, the 

performance evaluation is summarized as follows [5]: 

 For cut detection, our submission is the best and ranked 

as number one, where the recall/precision rates 

achieved are 97.3% and 98.2% respectively; 

 For gradual transition detection, our submission is 

ranked as number six and further analysis is given later; 

 Our submission is among the top three in terms of 

overall evaluation ; 

 It is worth noting that our best results in terms of all four 

measures are delivered in one single run, while most of 

others have their best results achieved in different runs. 

C. Performance Analysis in Details 

To analyze the reasons that lead to the best results on cut 

detection and slightly weaker results in detecting gradual 

transitions, we provide further discussions as follows. 
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1) Effectiveness of Important Parameters 

To illustrate the effectiveness of parameters, 0p  (for cut 

pre-filtering) and t  (for cut detection) are selected and 

evaluated in the precision-recall curves as shown in Fig. 1. For 

each parameter, three curves are plotted according to its three 

values. Ideally, the curve with a shape closest to the top-right 

corner presents the best result in terms of F1 measurement. 

From Fig. 1, the following observations can be made: 

 It can be seen that the overall performance is robust to the 

value change of parameters in a certain range where the 

precision-recall curves look similar to each other;  

 A larger 0p  and a smaller t  can help to deliver a higher 

precision rate. In contrast, a higher recall rate can be 

obtained if we choose a smaller 0p  and a larger t . 

 

 

Figure 1.  Precision-recall curves of 0p  and t  to show 

effectiveness of selected parameters for cut detection. 
2) Effect of Phase-correlation for Post-processing 

Further analysis reveals that the post-processing with 

phase-correlation helps to reduce about 3% of the false alarms 

in the improved precision rate while degraded recall rate is 

maintained at 0.2%. In other words, it contributes 1.2% towards 

the improvement of 1F  measurement.  

3) Error Analysis 

For abrupt cuts, missed detections are due to the fact that 

their content change is too small to be identified as any of the 

five cut categories as defined in Section III. For false alarms, 

they do present apparent visual differences introduced by 

strong motion or special editing effect. Some of them can be 

arguably regarded as a cut but as undefined in the GT.  

Regarding gradual transitions, the missed detection is 

mainly caused by dissolve of small changes in intensity/color 

and irregular wipe effects. False alarms are primarily caused by 

motion or change of lighting conditions. Since gradual 

transitions are detected within each pair of cuts, errors in cut 

detection is part of the cause. Among all the missed detection 
and false alarms, some errors are actually due to the ambiguity 

or even the mistakes in defining shot boundaries inside the GT.  

D. Complexity and Speed Analysis 

Since it is difficult to theoretically analyze the complexity of 

these algorithms, a relative comparison can be made according 

to number of frames processed in one second. As our proposed 

algorithm operates entirely in compressed-domain, it delivers 

123 frames per second (fps) in detecting shot changes from 

MPEG-1 videos. As a result, it can be well applied to online 

video segmentation and many other applications. 

V. CONCLUSIONS 

We provided a detailed description of the proposed method 

for SBD.  In comparison with existing work and all other 

submissions for TRECVID’07, our algorithm features in: (i) 

compressed domain operation, providing 5 times as fast as 

real-time video play; (ii) extraction of content differential 

features and their optimized selection via AdaBoost; (iii) pre- 

filtering and mapping of the selected features to characterize 

cuts in five categories; (iv) establishment of corresponding 

likelihood for decision making in SBD; (v) statistics analysis 

and determination of key parameters; and finally (vi) validation 
of the detected results using phase-correlation. As a result, 

excellent performance results have been achieved, and yet its 

high speed processing also provides a great potential for many 

real-time video processing and content-based applications.   
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