Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Fusion of intensity and inter-component chromatic difference for effective and robust colour edge detection

Ren, Jinchang and Jiang, J. and Wang, D. and Ipson, S. (2010) Fusion of intensity and inter-component chromatic difference for effective and robust colour edge detection. IET Image Processing, 4 (4). pp. 294-301.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Edge detection, especially from colour images, plays very important roles in many applications for image analysis, segmentation and recognition. Most existing methods extract colour edges via fusing edges detected from each colour components or detecting from the intensity image where inter-component information is ignored. In this study, an improved method on colour edge detection is proposed in which the significant advantage is the use of inter-component difference information for effective colour edge detection. For any given colour image C, a grey D-image is defined as the accumulative differences between each of its two colour components, and another grey R-image is then obtained by weighting of D-image and the grey intensity image G. The final edges are determined through fusion of edges extracted from R-image and G-image. Quantitative evaluations under various levels of Gaussian noise are achieved for further comparisons. Comprehensive results from different test images have proved that this approach outperforms edges detected from traditional colour spaces like RGB, YCbCr and HSV in terms of effectiveness and robustness.