
Ceriotti, Matteo and McInnes, Colin (2011) Generation of optimal 

trajectories for Earth hybrid pole sitters. Journal of Guidance, Control 

and Dynamics, 34 (3). pp. 847-859. ISSN 1533-3884 , 

http://dx.doi.org/10.2514/1.50935

This version is available at https://strathprints.strath.ac.uk/29194/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any correspondence concerning this service should be sent to the Strathprints administrator: 

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research 

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the 

management and persistent access to Strathclyde's intellectual output.

http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


Generation of Optimal Trajectories for 

Earth Hybrid Pole-Sitters 
 

 

Matteo Ceriotti* and Colin R. McInnes� 

University of Strathclyde, Glasgow G1 1XJ, United Kingdom 

 

Abstract 

A pole-sitter orbit is a closed path that is constantly above one of the Earth�s poles, by means of continuous low 

thrust. This work proposes to hybridize solar sail propulsion and solar electric propulsion (SEP) on the same spacecraft, 

to enable such a pole-sitter orbit. Locally-optimal control laws are found with a semi-analytical inverse method, starting 

from a trajectory that satisfies the pole-sitter condition in the Sun-Earth circular restricted three-body problem. These 

solutions are subsequently used as first guess to find optimal orbits, using a direct method based on pseudospectral 

transcription. The orbital dynamics of both the pure SEP case and the hybrid case are investigated and compared. It is 

found that the hybrid spacecraft allows savings on propellant mass fraction. Finally, is it shown that for sufficiently long 

missions, a hybrid pole-sitter, based on mid-term technology, enables a consistent reduction in the launch mass for a 

given payload, with respect to a pure SEP spacecraft. 

Nomenclature 

a  Acceleration, m/s2 

A  Area, m2 

d  Distance from the Earth, AU 

f Total thrust 

,g h  Coefficients for non-ideal sail 

i  Generic step 

spI  Specific impulse, s 

0g  Standard gravity acceleration on Earth�s surface, 29.81 m s  

J  Cost function 
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m  Mass, kg 

gimbalm  Thruster gimbal mass, kg 

plm  Payload mass, kg 

propm  Propellant mass, kg 

radm  Radiator mass, kg 

SEPm  SEP thruster mass, kg 

tankm  Propellant tank mass, kg 

thrustersn  Number of thrusters 

�m  Direction of solar sail acceleration 

�n  Solar sail normal unit vector 

P Power 

r  Position vector 

r  Reflectivity coefficient 

1 1 1
�� , ,r ș ĳ�  Unit vectors defining axes of reference frame (B) 

t  Time, d 

missiont  Duration of the mission 

�t  Solar sail tangent unit vector (in the plane of Sun vector) 

T  SEP thrust vector, N 

�u  Generic unit vector 

u  Control vector 

U  Effective potential 

ev  Exhaust velocity, m/s 

v  Velocity vector 

w  Weight 

W  Energy flux density of the Sun at 1 AU, 21367 W m  

x State vector 

� � �, ,x y z  Unit vectors defining axes of reference frame (A) 

  Cone angle, deg 

Page 2 of 35 



  Lightness number 

  Clock angle, deg 

eq  Obliquity of equator on the ecliptic (23.5 deg) 

t  Time increment 

  Efficiency 

  Angle between solar sail acceleration and Sun vector 

  Dimensionless mass of the Earth, 63.0404 10  in Sun-Earth system 

  Sail loading, kg/m2 

   Critical sail loading ( 31.53 10  kg m 2  for Sun-Earth system) 

Ȧ  Angular velocity, rad/s 

Subscripts 

0  Referred to beginning of the mission 

1  Referred to the larger primary mass (Sun) 

2  Referred to the smaller primary mass (Earth) 

a Referred to total acceleration 

f  Referred to final time or end of the mission 

guess First guess 

max  Maximum 

s  Referred to the solar sail 

SEP Referred to SEP engine 

T  Referred to SEP thrust vector 

TF  Referred to the thin film solar cells 

Superscripts 

  Optimal 

 A ,   Expressed in reference frame (A), (B) B

�  Unit vector 

  Differentiation with respect to time 
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Introduction 

Non-Keplerian orbits (NKOs) are trajectories obtained in a perturbed and/or controlled two-body Newtonian 

gravitational field. A spacecraft can achieve a NKO by means of a continuous control acceleration, which forces the 

natural dynamics of the system [1]. A particular kind of NKO is the pole-sitter, in which a spacecraft is constantly above 

one of the Earth�s poles, i.e. lying on the Earth�s polar axis [2]. The pole-sitter can provide a platform for continuous, 

real-time, medium-resolution observation of the Earth poles, with a full hemispheric view. Currently, observation of the 

Earth�s poles is performed with one spacecraft or a constellation of spacecraft in highly-inclined low or medium Earth 

orbits [3], and the hemispheric view of the pole is reconstructed through composite images that are made of several 

images taken at different times. These polar image composites are used to generate atmospheric motion vectors (AMV) 

and to identify storm systems. According to Lazzara [4], these two applications among others would benefit from a true 

pole-sitter spacecraft. For example, both at the North Pole and South Pole, an interval of latitudes exists in which AMV 

are not available, due to a gap in imaging between geostationary and polar orbiting satellites. Conversely, the possibility 

of seeing the Polar Regions with potential high spatial and temporal resolution would improve short term forecasting 

and understanding of atmospheric phenomena. Another significant benefit of the pole-sitter orbit would be for polar 

telecommunications. It is well known that line-of-sight telecommunications to conventional spacecraft in geostationary 

orbits is not possible at high latitudes. Although the distance of the spacecraft from the Earth could preclude high-

bandwidth telecommunications, a pole-sitter will always have a pole in sight, providing a continuous flow of data with, 

for example, scientific South Pole stations [5]. The same spacecraft could thus accomplish both real-time observation 

and telecommunication tasks over the Polar Regions. This will be a key issue in the future, as changes to the arctic ice 

pack opens navigation channels for shipping. 

The concept of having a spacecraft in an orbit that allows direct-link telecommunication and visibility of one of the 

Earth poles has been proposed [2, 5, 6], but only partly investigated. This paper studies optimal pole-sitter orbits in 

some detail and proposes to hybridize solar sail propulsion and solar electric propulsion (SEP) on the same spacecraft, 

to enable a near-term pole-sitter mission. Hybridizing these two propulsion systems is a recent idea [7], nevertheless 

research is flourishing in this field, investigating its potential for novel, interesting applications: artificial equilibria 

above L1 in the Sun-Earth system for Earth observation [8], optimal interplanetary transfers to Venus and Mars [9, 10], 

and displaced periodic orbits in the Earth-Moon system [11]. Finally, JAXA was recently successful in deploying the 

sail of the first hybrid solar sail demonstrator, IKAROS [12]. The reason for this interest is due to the fact that in the 

hybrid system, at the cost of increased spacecraft and mission design complexity, the two propulsion systems 

complement each other, cancelling their reciprocal disadvantages and limitations. In principle, SEP can provide thrust in 
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almost any direction (as long as the exhaust flow does not interfere with other spacecraft components), in particular 

providing an acceleration component towards the Sun, that the sail cannot generate. Similarly, the hybrid spacecraft can 

be seen as an SEP spacecraft, in which an auxiliary solar sail provides part of the acceleration, enabling a saving of 

propellant mass, and lowering the demand on the electric thruster, possibly with some intervals in which it could be 

turned off. 

In this work, an extension of both the simple, constant altitude pure-SEP pole-sitter orbit proposed by Driver [2], 

and the hybrid artificial equilibria proposed by Baig and McInnes [8] is proposed. With respect to the former, this work 

extends Driver�s analysis by considering hybrid propulsion and developing a method for designing true optimal pole-

sitter orbits. In the latter work [8], the spacecraft is stationary at an artificial equilibrium point above the Earth�s pole at 

the summer or winter solstice only. Therefore, the full hemispheric view of the pole only occurs at one particular time in 

the year, while at other epochs the polar region is partially out of sight. Instead, the new, continuous pole-sitter orbits 

presented in this paper are a practical realization of the solar sail pole-sitter orbits proposed qualitatively by Forward [6]. 

Hybrid propulsion requires new families of optimal orbits with respect to the use of classic SEP, as the presence of the 

solar sail generates a continuous acceleration without propellant consumption, and so introduces additional control 

variables, as well as attitude constraints. Trajectory design for hybrid low-thrust propulsion was addressed for co-planar, 

circle-to-circle interplanetary transfer in the two-body problem [9, 10]. Under these assumptions, the authors find the 

optimal steering law using an indirect approach. However, this technique cannot be applied to the pole-sitter problem, 

mainly because of the path constraint that forces the spacecraft to be above the pole at any time. Therefore, a novel 

method for minimum-fuel pole-sitter orbits in the circular restricted three-body problem (CR3BP) is proposed in this 

paper. After a brief description of the hybrid spacecraft dynamics (section I), section II presents a technique for 

generating quasi-optimal periodic orbits, based on an inverse control method, that minimizes the thrust pointwise. These 

orbits are subsequently used as a first guess for solving the optimal control problem numerically, and the resulting 

optimal solutions are presented for different sizes of sail and mission requirements. Finally, section III briefly compares, 

with a preliminary mass budget, the mass of a pure SEP spacecraft and the hybrid spacecraft in different scenarios, for a 

given payload. 

I. Equations of Motion 

The circular restricted three-body problem describes the motion of an infinitesimal mass (the spacecraft) under the 

gravitational attraction of two large masses (primaries), which are orbiting around their common center of mass in 

circular motion. The model neglects the influence of the spacecraft on the motion of the primaries. As is common, a 
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rotating reference frame is considered, in which the origin is at the center of mass of the system, the  axis is collinear 

with the two primaries, pointing towards the smaller mass, the  axis is aligned with the angular velocity of the system, 

and the 

�x

�z

�y  axis completes the right-handed Cartesian reference frame (see Fig. 1). This reference frame will be referred 

to as (A). Note that this frame is not inertial. In the following, all the vectors are expressed in this frame, unless specified 

by a different superscript. Therefore, the superscript (A) will be omitted when not strictly needed. The masses of the two 

primaries are denoted  and  (with ), and 1m 2m 1m m 2
�Ȧ z  the angular velocity of the system. The equations that 

describe the motion of the spacecraft in this system are: 

  2 U    r Ȧ r r  a  (1) 

where  is the position vector, a  is the acceleration due to external, non-gravitational forces (i.e. thrust), and the 

effective potential is 

r

     2 2

1 2
1U r r x   2y  r  . The mass ratio   is defined as  2 1 2m m m   . 

In the following, the system of equations will be used in their canonical non-dimensional form, that is assuming 

1 

�x

 and the unit of distance being the separation of the two primaries. With these assumption, the position along the 

 axis of  is 1m  , and the position of  is 2m 1  . In this work, the primary  is the Sun, and the primary  is 

the Earth: for these bodies, . The two vectors  and  are the 

position of the spacecraft with respect to the two primaries  and  respectively (

1m

 T

2m

6103.0404  1 0 0 r r

2m

 2 1 0 0
T  r r

1m Fig. 1). 

For a hybrid propulsion spacecraft, the acceleration a  is made of two contributions: one due to the solar radiation 

pressure on the spacecraft sail, sa ; the second is provided by the thrust of the solar electric propulsion (SEP) system, 

. The two fractions of the total acceleration vector will be described in the following subsections. Ta

 

 

Fig. 1 Reference frame (A) of the restricted three body problem, and apparent precession of the Earth�s polar 

axis due to rotation of reference frame. 

 

�y  
�x

�z

Ȧ

 

1r

2r

r

2m  (Earth) 

1m (Sun) 

1 

  

Winter 

solsticeeq t
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A. Solar Sail 

Solar sailing is the exploitation of solar radiation pressure produced by photons reflecting on a surface of the 

spacecraft (the sail) to produce a force, and thus an acceleration, without using any propellant. In this work, a non-

perfect solar sail force model, which takes into account specular reflection and absorption of the photons, will be used. 

Scattered reflection and emission by re-radiation are neglected. A detailed description of this sail model is found in Ref. 

[8]; here an overview is presented for sake of completeness. 

According to Ref. [13], and including the assumptions mentioned before, an approximate expression for the solar 

sail acceleration due to the Sun, acting on a sailcraft of mass m and sail area A, can be modeled as: 

 0

0 2

1

1 1 ��cos sin cos
2

s

m
g h

m r

    a n t  (2) 

The acceleration is expressed through its two components: one normal to the sail, along , and one perpendicular 

to the sail, in the plane containing the Sun vector , along �t . The angle between the direction of the Sun vector   and 

the normal to the solar sail  is known as the cone angle 

�n

1
�r 1

�r

�n  , and it holds that 1
� �cos  n r . 

The two coefficients g and h are functions of the optical properties of the sail surface. Ideally a solar sail is made 

of a light, thin film of highly reflective material, since maximizing its reflectivity maximizes the magnitude of the force. 

However, in the hybrid spacecraft, it cannot be assumed the sail material is uniform. In fact, part of the sail is covered 

with thin film solar cells (TFSC), which provide the necessary electrical power for the SEP engine. The TFSC have 

different optical properties than the rest of the sail (its reflectivity is lower, as part of the light is absorbed and converted 

into solar power). An area sA  of the sail is covered with highly reflective material, with reflectivity coefficient sr , 

while the remaining ssurface TFA A A   is covered with TFSC with reflectivity coefficient TFr . Under these 

assumptions, 

 

 

 

1

1

TF

s TF s

TF

A
g

s TF s

r r r
A

A
h r r r

A

     
 (3) 

The parameter 

     

0  is the system lightness number at beginning of life, defined as 

 
0

0

A

m

ass of the spacecraft at an initial

    (4) 

where  is the m  reference time , and the critical sail loading 0m 0t

3 21.53 10  kg m  a constant for the Sun-Earth s tem.     is ys

If the unit vector  is defined in the direction of �m sa , Eq. (2) can be rewritten as 
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 2 2 2 20

0 2

1

1 1
� cos sin cos

2
s s

m
a g h

m r


�  

  a m m  (5) 

The direction of  with respect to the Sun-line is identified by the angle �m   (see Fig. 2). It is possible to find a 

relationship between   and   [8], such that the acceleration Eq. (5) can be expressed as a function of the cone angle 

  only: 

 
 

2

tan
tan

tan

g h

g h










 (6) 

An intrinsic limitation of solar sailing is that the thrust force can only point away from the Sun. This is equivalent 

to stating that the normal vector  cannot be directed towards the Sun, which translates into the attitude constraint: �n

 0 2    (7) 

To uniquely define the direction of  in space, it is useful to define a new reference frame, named (B), depending 

on the position of the spacecraft, defined as: 

�m

 

1

1

1

1

1 1 1

�

���( ) :
��

�� �

B








  

r

z rș
z r

ĳ r ș

 

A vector defined in the reference frame (B) can be expressed in frame (A) considering the transformation: 

  (8) 
   

1 1 1
�� �

T
A    u r ș ĳ u

B


where  is the rotation matrix from (A) to (B). 1 1 1

�� �
r ș ĳ

As discussed, the cone angle defines the pitch attitude of the solar sail with respect to the Sun direction . The 

attitude of the sail around this vector is determined through the so called clock angle 

1
�r

 : this is the angle, measured 

around , of the component of  perpendicular to , starting from the direction of  (see 1
�r �n 1

�r 1
�ĳ Fig. 2). 

The Cartesian coordinates of the unit vectors  and , expressed as a function of their cone and clock angles, can 

be defined in frame (B) by: 

�n �m

 
 

cos

� sin sin

sin cos

B


 
 

 
   
  

n ; 
 

cos

� sin sin

sin cos

B


 
 

 
   
  

m  (9) 
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1 1 1
�� � ĳ r ș

 

Fig. 2 Frame (B), sail normal (n) and sail acceleration (m) cone and clock angles. 

 

A reflectivity of ,  for the sail and the TFSC respectively [0.9sr  0.4TFr  7] will be assumed. Also, the TFSC 

occupies 5% of the total area of the sail, hence 0.05TFA A  . This is estimated to be a conservative value, based on 

previous studies [8]. The actual area of the thin film solar cells can be determined once the requirements on the thrust 

are defined, by sizing the power subsystem. 

The analysis will be performed for a set of values of the lightness number 0 , ranging from 0 (pure SEP) to 0.1, 

that represents a future estimation of sail performance. A value of 0.05 can be assumed for a near-term system [14]. 

B. SEP Thrust 

The thruster is assumed to be steerable and can provide an adjustable thrust force. The direction of the thrust 

vector  can be defined through the unit vector , i.e. T �
Tu �

TTT u . The relation between the thrust and the resulting 

spacecraft acceleration is therefore: 

 � �
T T T

T
a

m
 a u u

T  (10) 

Analogously to , the unit vector  can also be expressed in terms of its cone and clock angles �n �
Tu ,T T  . These 

angles are defined in the same way as for the solar sail; therefore, in frame (B): 

 
 

cos

� sin sin

sin cos

T

B

T T

T T



T 
 

 
   
  

u  (11) 

In the case of the solar sail, the parameterization through the cone and clock angle is useful due to the relationship 

between the cone angle to the magnitude of the force. In the case of the SEP thrust, the choice is dictated by having the 

same parameterization for the two parts of the acceleration. 

A specific impulse of  is conservatively assumed, based on current ion engine technology (existing 

NSTAR/DS1 [

3200 sspI 

15] or EADS/Astrium RIT-XT [16]) that can provide levels of thrust suitable for the spacecraft and 



1
�r

  

1
1

1

���
��





z rș
z r

�n



�m

1  

1  �r

Sail 
�r
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mission under consideration. Higher values of specific impulse can be achieved with current technology, for example 

the FEEP thruster can provide up to 10,000 s, but the thrust is limited to 2 mN [17]. 

II. Pole-Sitter Orbit Design 

A pole-sitter spacecraft, during the operations phase of its mission, is constantly aligned with the polar axis of the 

Earth. If precession of the equinoxes and nutation are neglected, the polar axis of the Earth does not change its direction 

while the Earth is orbiting the Sun. Therefore, in the rotating reference frame (A), the polar axis rotates with a motion of 

apparent precession. Its angular velocity is the opposite of that of frame (A), or Ȧ . Therefore the polar axis spans a 

full conical surface in frame (A) every year (see again Fig. 1). The cone half angle is the tilt of the axis relative to the 

ecliptic, i.e. 23.5 degeq  . Therefore, the pole-sitter shall follow the Earth�s polar axis, and describe a 1-year-periodic 

orbit. 

The equations of motion of the hybrid propulsion spacecraft, in reference frame (A), can be found starting from Eq. 

(1) and substituting the two accelerations due to the sail (Eq. (5)) and SEP (Eq. (10)). An additional equation is required 

that relates the mass consumption with the thrust force. By introducing the state vector , the 

differential equations can be written as a first order system: 

T
T T m   x r v

 
   � �2
A A

s T T

e

U a a

m T v

  
          
      

vr

x v Ȧ v m u


 


 (12) 

where m  is the rate of change of spacecraft mass and 
0e spv I g  is the exhaust velocity. 

The dynamics of the spacecraft Eq. (12) are to be constrained to follow the apparent precession of the polar axis, 

and hence maintain the pole-sitter condition. It is assumed that the initial time 0 0t   coincides with the winter solstice, 

and therefore at any generic instant of time t the pole-sitter spacecraft is on the cone at position: 

  
   

 
 

sin cos 1

sin sin

cos

eq

eq

eq

d t t

t d t t

d t

  

 



  
 

  
 
  

r  (13) 

where  is the distance from the center of the Earth, and is in general a continuous function of time. Without loss of 

generality, due to the symmetry of the problem in the -  plane, the North Pole case is considered in this work. 

 d t

�x �y

Note that in a pure SEP spacecraft, the term 
 �

sa m he system in Eq. 
A

 in t

e

(12) is null, and thus the coupling between 

the equation of the mass flow and the equations for ,r v  is through the acceleration Ta , that is d fined as a function of 
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the control T through TT ma . Ho as long as the SEP system can provide the necessary thrust (i.e. the thrust is 

not saturated), then the system in Eq. 

wever, 

(12) can be scaled in mass, without affecting the evolution of the other states. 

Therefore, the optimal solution in terms of    ,t tr v ound using a unitary initial mass. The actual evolution of 

the mass over time for a given spacecraft is found by multiplying the mass fraction by the initial mass of the spacecraft. 

This means that the initial mass is only a scaling factor for the same equation, and does not affect the motion of the 

spacecraft. Furthermore, if a periodic orbit is considered, and until the propulsion system is able to provide the 

necessary peak thrust, the propellant mass fraction for each orbit period does not depend on the initial mass. This is not 

the case for the hybrid spacecraft: in fact, the spacecraft mass is coupled with the equations of motion through the term 

 can be f

sa , which depends explicitly on the mass, and the system cannot be scaled. In fact, while with SEP the magnitude of the 

thrust can be varied to compensate for the mass reduction, the magnitude of the thrust generated by the sail cannot be 

controlled independently of its direction. This means that the acceleration provided by the sail, for a given cone angle, is 

higher as the mass decreases, and the propellant mass fraction needed for each orbit period is different depending on the 

actual value of the initial mass in that period. 

In this work, minimum fuel pole-sitter orbits will be designed, by solving an optimal control problem. This 

requires a first guess that is accurate enough to allow the optimizer to converge quickly and smoothly to a locally 

optimal solution. The first guess will be generated using an inverse method, as described in the following subsection. 

A. Inverse Method 

An inverse method is proposed in this work to generate feasible, sub-optimal pole-sitter orbits. Inverse methods 

have been used in different areas of control design. Although the definition of �inverse method� is quite broad, and 

substantially different approaches are found in literature, the common background to all of them is that the control 

history is found by inverting the equations of motion, once the evolution of the states has been pre-assigned. Inverse 

methods have been used for aircraft flight control (see Ref. [18] and other works referenced therein), and for controlling 

robotic arms [19]. In this work it is shown that the spacecraft controls can be obtained along a pre-assigned orbit, by 

minimizing the SEP thrust pointwise. 

1. Thrust Vector Optimization 

In this subsection the following problem is addressed: assigned a kinematic law for the spacecraft motion through 

the position , a function of time, find the controls  tr  tu  at each instant of time that enable that orbit. At each 

generic instant of time t, the total acceleration needed a  can be computed from Eq. (1), in fact all the other terms are 
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determined when  tr  (and its time derivatives) is given. The acceleration can also be expressed in modulus, cone and 

clock angles in the following way. The modulus is simply: 

 2a U   r Ȧ r   (14) 

The cone and clock angles a  and a  can be found rewriting  in frame (B): �a

  (15) 
   

1 1 1

cos

�� � � �sin sin

sin cos

a

A

a a

a a


 
 

 
      
  

r ș ĳ a a
B

Inverting Eqs. (15) it is found that: 

 

 

   
1

1 1

1

1

�cos

� �
tan ,

sin sin

B

a r

B B

a

a a

a

a a 




 








 
 
 

  (16) 

in which the four-quadrant inverse tangent function is used. 

Finally, the magnitude of the thrust force needed (which can be provided by both propulsion systems) is simply 

f ma . Note that if no solar sail is used, then the thrust shall be provided by the SEP system completely, and therefore 

the controls are simply T f ,  T a  , T a  . If at any time f exceeds the maximum SEP thrust available, then the 

selected orbit cannot be followed with a pure SEP system: either another orbit is to be chosen, or an additional 

propulsion system (e.g. sail) is to be used. It can also be noted that the mass of the spacecraft is not constant throughout 

the orbit, but is a function of time, and can be computed knowing the previous control history. 

SEP-only solutions are not optimal for the hybrid spacecraft, in terms of propellant mass consumption, since they 

do not exploit the solar sail. A different approach can be used: since the kinematics is given, and so is the total 

acceleration, the attitude of the solar sail can be found, such that the SEP thrust is minimum at each instant of time. 

The magnitude of the SEP thrust can be expressed as a function of the sail cone and clock angles: 

   �,T sa a   a m  

in which a  is known through Eq. (1), and the term  can be computed using Eqs. �
sa m (5), (6), and (9), and depends on 

the sail cone and clock angles, and the spacecraft mass. Therefore, at each point in the trajectory, and for a given mass, 

the sail angles ,  can be determined by solving the NLP problem: 

 
0 2
0 2

arg min ,
T

a
 
 

  




  
 

 
 

 
 (17) 
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If the mass as a function of time is known, then for each point on a given trajectory, the controls can be computed 

by solving the problem defined by Eq. (17). It was demostrated analytically in [8] that the minimum-thrust solution is 

such that, in the general case: 

 a    (18) 

and since a  is known through (16), the problem can be reduced to: 

  
0 2

arg min ,
T a

a
 

  

 
  (19) 

The minimization of Eq. (19) is solved numerically, using an SQP method [20] implemented in the MATLAB® 

function fmincon. To prevent the possibility of converging to a local minimum, 4 different starting points are used, 

spread in the interval  0, 2 . Note that the numerical solution of the problem in Eq. (19) implies that a closed form 

solution of the inverse method is not available. 

Once ,    are found, the other controls can be easily computed: the modulus of the SEP thrust T is simply given 

by ; its direction can be found considering the SEP acceleration vector Ta m �
T as a a m , that can be expressed in 

frame (B) and then the angles can be found through Eq. (16) applied to . Ta

The method that is used here to find the acceleration at each specific point  tr  can be extended to find entire 

orbits. This will be the subject of the following subsection. 

2. Extension to Periodic Orbits 

Here one-year periodic pole-sitter orbits are sought. The initial mass of the spacecraft , at time 0m 0 0t  , the 

winter solstice, is assumed to be 1000 kg. Note that this mass in general is not the launch mass, but the mass remaining 

after performing the transfer and injection into the pole-sitter orbit. This part of the mission is not a subject of this paper. 

The controls at successive instants of time, together with the mass consumption, can be approximated by discretizing the 

trajectory into several points, each of which is spaced by a time interval t . At each point, controls can be estimated 

through Eq. (17). Once the thrust is known, it can be assumed that this level of thrust remains almost constant for an 

interval . Therefore the differential equation for the mass in system Eq. t

it

(12) can be integrated from the ith time 

instant  to the following instant : 
1i it t t   

 
1i i

e

T
m m

v
 t    (20) 

Algorithm 1 is used to compute the entire one-year periodic orbit. The final time  coincides with 
ft 2  in non-

dimensional time. 
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Algorithm 1 Inverse method for computing controls. 

 1: Set   0 0;t t m m 
 3: Do  

 4:  Given      , ,t t tr r r   from kinematics, 

   find total acceleration using (14) and (16) 

 5:  Find ,    with (18) and solving problem (19) 

 5:  Find other controls , ,T TT    

 6:  Update mass with (20): em m T t v     

 7:  Update time: t t t   

 8: While  ft t

 

Firstly, the analysis with a pole-sitter orbit that keeps a constant distance from the Earth�s pole is considered (Fig. 

3 (a)). The kinematics of this trajectory is simply the one in Eq. (13), with   constd t d  . 

 

a) b)  

�x  

1d
eq

2d

0 0t 

d
eq

t

�x

0 0t   

Fig. 3 Shape-based pole-sitter orbits: (a) Constant distance from the Earth; (b) Tilted orbits. 

 

Using Algorithm 1, the locally-optimal hybrid solution for the constant-distance pole-sitter is obtained. The 

trajectory of the spacecraft over one year is plotted in Fig. 4, superimposed on the cone described by the Earth�s polar 

axis. The bold arrows are proportional to the total local acceleration a from Eq. (1), that needs to be counterbalanced by 

the total thrust, for maintaining the orbit. The other vector fields refer to the reference case 0 0.05  . The gray arrows 

represent the acceleration of the solar sail sa . Their direction is slightly tilted with respect to  (not plotted), due to the 

non-ideal sail that was considered. Finally, the black, non-bold arrows represent the SEP thrust. It can be noted that the 

gravitational acceleration is mostly directed towards 

�n

�z , therefore the resulting thrust shall be in the opposite direction. 

The solar sail thrust has a component in , but it is accompanied by a significant component along , i.e. facing 

away from the Sun. The SEP is therefore providing the missing component in 

�z �x

�z , but also counteracting the residual  

component. 

�y
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Fig. 5 shows the magnitude of the acceleration provided by the sail (a) and SEP (b), for different values of 0 : the 

solid lines refer to 0 0  , i.e. a pure SEP system with no sail, the long-dashed lines to 0 0.05   and the short-dashed 

lines to 0 0.1  . The bold circled line is the magnitude of the gravitational forces. In the case of pure SEP, the SEP 

acceleration is obviously the same as the gravitational acceleration. In the hybrid case, clearly the SEP acceleration is 

lower for higher values of 0 . Additionally, from the figure it is possible to see that higher acceleration is required from 

SEP around the summer solstice, roughly in the interval  0.3,0.7  yearst . The maximum thrust required is the rather 

high value of 227 mN for the pure SEP case, which goes down to 169 mN and 146 mN for increasing values of 0 . 

The spacecraft mass as function of time is plotted in Fig. 6. From the figure, it is visible the mass gain of the 

hybrid propulsion case with respect to the pure SEP spacecraft. This plot also highlights that the spacecraft mass flow 

rate (and hence the SEP thrust) is almost constant: this is due to the fact that the dominant gravitational term is due to 

the Earth (which is constant at constant distance), while the Sun and other forces only cause slight perturbations. 

 

 

Fig. 4 Trajectory and thrust vectors for ȕ0 = 0.05 over one year on a flat orbit d = 0.01 AU. 
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Fig. 5 Acceleration of the sail (a) and SEP (b) for different values of ȕ0, over one year on a flat orbit d = 0.01 

AU. 
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Fig. 6 Mass trend for different values of ȕ0, over one year on a flat orbit d = 0.01 AU. 

 

A parametric analysis can be performed for orbits maintaining a constant distance from the Earth, as a function of 

the distance itself. Fig. 7 illustrates the propellant mass fraction of the spacecraft in a constant-distance pole-sitter orbit, 

for one year, as a function of the distance of the orbit, for three values of 0 . These orbits become extremely expensive 

when the distance from the Earth decreases, as the Earth�s gravitational attraction becomes predominant with respect to 

the other forces of the CR3BP. This result matches what was found in [2]. It is also interesting to note that the propellant 

consumption has a minimum for distances of about 0.0170 AU, 0.0175 AU and 0.0180 AU, for the three values of 0 . 

These are therefore the optimal distances for a constant-distance pole-sitter orbit. 
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Fig. 7 Propellant mass fraction needed for one year on a flat, circular orbit, as a function of the distance d from 

Earth (initial spacecraft mass m0 = 1000 kg). 

 

Finally, Fig. 8 shows the propellant mass fraction needed for a spacecraft of 1000 kg to maintain an orbit at 

 from the Earth. This graph is relevant because it highlights that a consistent gain in propellant mass is 

obtained by adding a small sail to the pure SEP spacecraft: in fact, the slope of the curve is highest for small values of 

0.017 AUd 

0 . As the lightness number increases towards very high values, the gain in propellant mass for a given increase of 0  

becomes less. However, this graph justifies the investigation of the hybrid spacecraft, seen as a pure SEP system with a 

small auxiliary sail. The trend of this graph is the same for different values of d. The effect of the sail on the total mass 

budget of the spacecraft will be discussed later. 

Note that even if a higher 0  sail produces a higher acceleration sa , its direction is still constrained and related to 

the cone angle, and in general it is not aligned to the total acceleration vector a  (see vectors in Fig. 4). Therefore, a 

higher sail acceleration is in general accompanied by a greater acceleration component in an unwanted direction, which 

shall be compensated by using the thruster. 
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Fig. 8. Propellant mass fraction needed for one year on a flat, circular orbit (d = 0.017 AU), as a function of the 

sail lightness number ȕ0 (initial spacecraft mass m0 = 1000 kg). 

 

Different families of pole-sitter orbits, which reduce propellant mass, can be obtained by relaxing the constraint of 

a constant distance from the Earth. It is possible to reduce the thrust and better exploit the capabilities of the solar sail by 

tilting the orbit such that the required acceleration is towards the Sun, and thus it can be counterbalanced more 

efficiently by the solar sail. 

A different set of shapes will now be considered, in which the distance from the Earth at the winter solstice   

and at the summer solstice  are introduced as parameters (

0d

1d Fig. 3 (b)). The  coordinate is varied between these two 

values with a sinusoidal law: 

�z

      
0 1 0

1 cos

2

t
d t d d d


    (21) 

If for example  and  are selected, the orbit in 0 0.01 AUd  1 0.018 AUd  Fig. 9 is obtained. From the vector field 

of the forces, it can be seen that during summer the alignment of the gravitational forces is more favorable. 

The plot of the accelerations as a function of time (Fig. 10) confirms this: while the sail provides more or less a 

constant acceleration through the year, the SEP acceleration drops considerably around summer. This results in 

significant saving in propellant mass. The maximum thrust required is at the beginning of the orbit, when the spacecraft 

mass is higher and the distance from the Earth is minimum, and ranges from 243 mN to 130 mN for increasing values of 

0 . Note that this last value is lower than the one found for the constant distance orbit, despite that the altitude at the 

initial point is the same, and it is due to the different acceleration that the spacecraft requires at that point. 

Fig. 11 represents the mass as a function of time. Over summer, the sail is exploited most and this is reflected in a 

lower propellant consumption. This is to be compared with Fig. 6, where the fuel consumption was almost constant. The 

mass saving due to the tilting of the orbit is evident, although the average distance of the spacecraft from the Earth 
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during an orbit is higher. It is worth noting that the propellant mass saving is not only due to the increased distance of 

the spacecraft during summer, but also to the favorable alignment of the forces. In fact, tilting the orbit in the other 

direction (i.e.  and ) produces a much worse result in terms of propellant consumption. 

Therefore it can be concluded that, in general, it is cheaper to observe the North Pole from a shorter distance in winter 

than in summer. 

0 0.018 AUd  1 0.01 AUd 

 

 

Fig. 9 Trajectory and thrust vectors for ȕ0 = 0.05 over one year on a tilted orbit d0 = 0.01 AU, d1 = 0.018 AU. 
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Fig. 10 Acceleration of the sail (a) and SEP (b) for different values of ȕ0, over one year on a tilted orbit d0 = 0.01 

AU, d1 = 0.018 AU. Total acceleration is also plotted on both graphs. 
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Fig. 11 Mass trend for different values of ȕ0, over one year on a tilted orbit d0 = 0.01 AU, d1 = 0.018 AU. 

 

3. Remarks 

The solutions generated with the proposed inverse method are near-optimal, in the sense that the thrust to maintain 

a given orbit is minimized at each instant of time. Therefore, for the specific paths considered, the control profile that 

was found is the one that allows minimum propellant consumption. If, for example, a payload requires a constant 

distance from the Earth throughout the year, then the orbit is defined. Note that in the case where the kinematics is fully 

determined, it was verified by several numerical experiments that Algorithm 1 provides solutions that are extremely 

similar to those that can be found by solving an optimal control problem, minimizing the propellant mass, and keeping 

the orbit fixed. However, if there is no constraint or requirement on the orbit, but for example only a range of distance is 

specified (depending for example on the instrument requirements) then the use a priori of a specific orbit cannot be 

justified. As discussed, different orbits could affect the amount of thrust needed at each instant of time, and thus the 

propellant mass over one year. 

Due to the constraint of the pole-sitter spacecraft, all possible orbits can be described through the distance from the 

Earth as a function of time during one year,  d t . Among these, there shall be at least one particular 1-year-periodic 

orbit, for any given value of 0 , that minimizes propellant mass while maintaining the spacecraft above the pole. 

As seen in Fig. 7, the propellant mass fraction is not monotonically decreasing with the distance from the Earth, 

but it has a minimum. Although the figure refers to the case of flat orbits, the same trend is seen for tilted orbits. This 

fact indicates that orbits do not become indefinitely cheap while increasing their distance. Therefore, it can be expected 

to find optimal orbits without limiting the maximum distance from Earth. 

If the kinematics of the orbit are not known a priori (that is equivalent to say that the distance function  d t  is not 

given), then the semi-analytical procedure used so far is not applicable, and the solution, that includes determining the 

optimal trajectory, is found by solving an optimal control problem. The optimal control problem is one of finding the 
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control history of a given dynamical system, such as to optimize a given cost function, while satisfying the dynamics 

itself and possibly other constraints, which can include initial/final conditions. 

In the following section, the solution will be found through a direct method. All direct methods need to be 

initialized with an initial (or first-guess) solution, which is close enough to the optimal one to guarantee convergence; 

orbits and control histories found with the inverse method will be used for this purpose. 

B. Optimal Orbits 

The problem is to find optimal periodic orbits with respect to a given cost function, specifically to minimize the 

propellant consumption, or maximize the final mass. Given that a pole-sitter orbit is fully determined through the 

function , a possible approach is to obtain an equation for the dynamics of  d t  d t . If the position vector is expressed 

through Eq. (13), then the three-component dynamics for  tr  in Eq. (1) can be transformed into three scalar equations, 

all involving . One of these equations can be used for describing the dynamics of d, while the other 

two represent differential constraints on the control, necessary for meeting the pole-sitter condition (i.e. maintain the 

spacecraft above the pole). In this work, rather than using this approach, the dynamics in Eq. 

     , ,d t d t d t 

(12) is used, and then the 

pole-sitter constraints are enforced explicitly, to ensure that  tr  is compatible with Eq. (13). 

As the problem will be solved for one orbital period ( 2ft  ). The fixed initial states ( ) are: 0 0t 

    0 00,yr t m t m0   

The first condition, together with proper bounds ,on x zr r , guarantees that the starting point is at the winter 

solstice. Other initial states are free. Therefore, the optimizer is allowed to move the initial po on the � �int x y  plane, 

specifically raise or lower it, as well as the initial velocity. 

The periodicity of the solution is set requiring that the final states, except the mass, are the same as the 

corresponding initial states: 

        0 0,f ft t t t r r v v  

Note that, despite the choice of the winter solstice as the initial point, since the orbit is periodic, it does not imply 

that the injection from transfer should necessarily happen in this point. 

Since the spacecraft has to stay along the polar axis of the Earth at each time , two path constraints are 

introduced, such that: 

0t t

 
 

 

1

2, 2,

2 2

2, 2, 2,

tan , 0

tan 0

y x

x y z eq

r r t

r r r





   

  
 (22) 
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The former defines the angular position of the spacecraft around the Earth in the  plane, while the latter 

constrains the distance of the spacecraft measured from an axis passing from the centre of the Earth and parallel to . 

� �x y

�z

Controls are transformed into Cartesian coordinates, to prevent problems with ambiguity and periodicity of angular 

variables, which can arise [21]. Therefore, the thrust is described through its Cartesian components along , 

respectively 

1 1 1
�� �, ,r ș ĳ

1 1
, ,rT T T

1 

�n

 The attitude of the solar sail is analogously described through the components in the same frame 

of the unit vector . Its three components 
1 1 1
, ,rn n n   are sufficient to determine the direction of , and its magnitude is 

not relevant. Even though a path constraint is enforced, to guarantee the uniqueness of the solution: 

�n

 
1 1 1

2 2 2 1
r

n n n    . 

The sail attitude constraint in Eq. (7) is enforced with the control bound . Finally, bounds are set on the 

position states, such that the spacecraft does not exceed a maximum distance  from Earth. 

1
0rn 

xmad

Different cost functions will be used and will be specified in the following subsections: the overall aim is to 

minimize the propellant consumption. 

The optimal control problem is solved numerically using a direct method based on pseudospectral transcription, 

implemented in the tool PSOPT. PSOPT is coded in C++ by Becerra [22] and is free and open source. PSOPT can deal 

with endpoint constraints, path constraints, and interior point constraints. Bounds on the states and controls can be 

enforced, as well as intervals for initial and final states [23]. It makes use of the ADOL-C library for the automatic 

differentiation of objective, dynamics and constraint functions. The NLP problem is solved through IPOPT [24], an 

open source C++ implementation of an interior point method for large scale problems. 

C. Results 

The optimized solutions presented here are for the three values of 0 0, 0.05, 0.1  . The results use 60 collocation 

points in the one year mission duration. It was assessed that a higher number of points did not result in any significant 

change in the states or controls history. The convergence of PSOPT is easier and faster using a small number of points: 

therefore, all the following solutions were found by iteratively increasing the number of points, from 20 to 60, and using 

the optimal solution found at one iteration as a first guess for the following one. 

The next subsection will present optimal orbits that minimize the propellant consumption of the spacecraft over 

one period, with no constraints on the spacecraft distance from the Earth. In the one after, instead, a trade-off will be 

presented, quantifying the additional propellant needed to satisfy given constraints on the distance. 
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1. Minimum Propellant Consumption 

In this section, propellant consumption will be minimized; therefore the cost function is simply: 

  f f
J m m t     

that is, to maximize the final mass after one period, or one year. Note that linear minimum-fuel problems, with 

constrained control magnitude, usually result in a bang-off-bang control [25]. In this case, such a control is not expected 

due to the path constraints on the states: in general, a continuous control is needed to maintain a pole-sitter orbit. Even if 

a limitation on the maximum magnitude of the thrust is taken into account, the SEP thrust law does not present an on-off 

structure. However, it will be shown that the SEP system could be switched off in some arcs, if the solar sail is sufficient 

to maintain the pole-sitter condition. 

In this section constraints are not enforced on the distance of the spacecraft from the Earth. The value  was set 

to the rather high value of 0.1 AU. The aim is to find the cheapest orbits in terms of propellant consumption. 

maxd

Fig. 12 (a) represents the three different optimal trajectories, obtained with PSOPT, for each value of 0 ; Fig. 12 

(b) plots the distance of the spacecraft form the Earth. The first point to note is that all the optimal orbits are naturally 

symmetric with respect to the  plane. Furthermore, the pure SEP solution would optimally follow an orbit that is 

also symmetric with respect to an ideal plane passing through the Earth and perpendicular to . On the other hand, the 

optimal orbits gets closer to the Earth in winter and farther in summer, as the lightness number of the solar sail 

increases. The distance can even double from winter to summer for a solar sail with a lightness number of 0.1. 

� �x z

�x
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Fig. 12 Minimum propellant mass pole-sitter solutions, for three different values of ȕ0, during one year. (a) 

Trajectories. (b) Distance from the Earth (in km). 

 

The acceleration provided by the solar sail and the SEP system is plotted in Fig. 13. Considering the pure SEP case 

in the analysis, two thrust regions can be identified: one across the summer solstice and one across the winter solstice. 
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Due to the selected time-frame, starting at the winter solstice, the latter region is split in the plot. In these two regions 

the SEP acceleration is almost constant. The two regions are separated by two short arcs, in the autumn and spring 

equinoxes, in which the thrust becomes very low, and the spacecraft motion along  is inverted: the instant with lowest 

thrust happens at the maximum distance from Earth (compare with 

�z

Fig. 12 (b)). 

If a solar sail is added (see the case 0 0.05   in Fig. 13), the SEP acceleration required in the two thrust arcs 

decreases, and thrust region around the summer solstice becomes shorter, while two non-thrusted arcs expand, 

increasing the time when the thruster is off, and the solar sail is almost sufficient to maintain the spacecraft orbit. 

Eventually, for a suitably large solar sail ( 0 0.1  ), the thrust region around the summer solstice disappears, 

while the two ballistic arcs merge: becoming only one, lasting from spring to autumn approximately. Hence the tilting 

of the orbit can be explained in the following way: having the spacecraft high in summer and a low in winter allows the 

orbit to exploit, for a considerable amount of time, the solar sail and the natural forces only to drive the spacecraft back 

to the winter solstice point and close the orbit. 

The mass as a function of time is represented in Fig. 14. In this figure the substantial saving in propellant that is 

given by a relatively small sail is evident: for a 1-year orbit, the propellant mass decreases from 158 kg (for the pure 

SEP) to 97 kg ( 0 0.05  ). Confirming the result found before (see Fig. 7), a reduction of propellant mass is obtained 

by adding a relatively small sail. However, the saving in propellant mass is less than proportional to the lightness 

number. 

Fig. 15 represents the angle between the solar sail normal and the SEP thrust. The purpose of this plot is twofold. 

The first is to show that, throughout the whole mission, the required thrust is never lying in the plane of the solar sail. 

Thrusting along the sail would pose severe problems due to exhaust gases impinging on the sail itself. The second aim is 

to underline that the rotation of the thrust vector with respect to the sail is limited. If it is assumed that the solar sail is 

fixed with the spacecraft, then its orientation can be changed by changing the attitude of the spacecraft. However, the 

SEP thruster cannot be fixed with respect to the spacecraft, as the thrust direction needs to vary; instead, it shall be 

mounted on a gimbal. The rotation needed is less than 2 degrees, in the worst case ( 0 0.1  ), hence a simple 

mechanism can be sufficient to guarantee the required thruster pointing. 

Finally, Table 1 summarizes some features of the three optimal orbits (for each considered value of 0 ) that were 

designed. Note that all the solutions found imply the use of the thruster. A pure sail mission can be seen as a particular 

case of the hybrid mission, in which no thrust is needed. Since the optimal orbits were found minimizing the propellant 

mass, it is expected that a no-thrust solution would have been found if it existed, at least for the range of 0 , distance 
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from Earth and other technological parameters considered. No such solutions were found so that pure solar sail pole-

sitter orbits are not believed to exist. 
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Fig. 13 Acceleration of the sail (a) and SEP (b) for three different values of ȕ0, during one year. 
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Fig. 14 Mass as a function of time, for three different values of ȕ0, during one year. 
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Fig. 15 Angle between the thrust vector uT with respect to the solar sail normal n, for three different values of ȕ0, 

during one year. 
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Table 1 Summary of characteristics of unconstrained optimal orbits for three different values of sail lightness 

number. Time frame is one year; initial mass is m0 = 1000 kg. 

0   min
t

d t , AU  max
t

d t , AU 
fm , kg 

0propm m   max
t

T t , N 

0.0 0.015675 0.020332 843.430417 0.156570 0.180648 

0.05 0.013116 0.023422 901.896219 0.098104 0.141085 

0.1 0.011896 0.028363 925.192867 0.074807 0.134256 

 

2. Orbit Performance Trade-off 

In this subsection the trade-off between an orbit with a particular feature, and the additional propellant mass 

needed to maintain it is considered. A possible, important requirement of the pole-sitter spacecraft could be the 

maximum distance from the Earth. It has been shown that fuel-optimal orbits vary their distance quite consistently, and 

this can be an issue, for example, for guaranteeing a sufficient resolution for observation of the Earth. Therefore families 

of optimal orbits have been designed, constraining the maximum distance of the spacecraft, by gradually decreasing the 

value . maxd

Table 2 presents the results of the optimal orbits for different values of  and maxd 0 0.05  . Note that for values of 

 lower than those considered in the table, the orbit is substantially flat, and therefore the optimal constrained 

solution coincides with the flat orbit found with the inverse method, and the value of the final mass after one year is the 

one represented in 

maxd

maxd

Fig. 7. Note that the thrust peak value does not change significantly as the orbit gets closer to the 

Earth, but the propellant needed is nevertheless more due to a higher value of the thrust required throughout the whole 

orbit. This is due to the fact that the peak of thrust happens at the beginning of the orbit, at the winter solstice, and when 

the spacecraft mass is highest. The distance of the orbits from Earth at the winter solstice is almost the same as long as 

, and so is the thrust needed at that point. The families of orbits that are obtained are plotted in 0.014 AU Fig. 16. 

 

Table 2 Summary of optimal orbits (minimum propellant mass consumption over one year) obtained 

constraining the maximum distance from the Earth to dmax. Initial mass is m0 = 1000 kg, ȕ0 = 0.05. 

maxd , AU  min
t

d t , AU  max
t

d t , AU 
fm , kg 0propm m   max

t
T t , mN 

0.018 0.013184 0.018 904.45 0.095 137 

0.016 0.013201 0.016 900.39 0.100 135 

0.014 0.013107 0.014 892.81 0.107 130 

0.012 0.011991 0.012 878.01 0.122 133 
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Fig. 16 A family of optimal orbits, constrained to several values of dmax, for ȕ0 = 0.05. 

 

Another possible requirement for the pole-sitter spacecraft payload could be to maintain a constant or quasi-

constant distance from the Earth. This can be useful, for example, for an instrument with a fixed focal length, in which 

the field of view cannot be varied, and thus a constant distance from the Earth is desirable such that the instrument can 

be designed for that distance. It was discussed already that if the orbit is flat, then the inverse method can be used to 

compute the optimal controls, and minimize the propellant mass. In this section, however, a trade-off between the 

flatness of the orbit and the additional propellant mass required will be performed. It is assumed that there is no 

particular requirement on the maximum distance . To achieve this, in the cost function a weighed penalty that 

considers the movement of the spacecraft along  is introduced. If it is noted that a flat orbit is one in which the 

velocity along  is null during the whole orbit, so a possible choice of the cost function could be: 

maxd

�z

�z

 

2

2

0

d
2

f z

w
J m v




   t . (23) 

By varying the weight w, a trade-off of propellant mass against a low average of the spacecraft velocity along  is 

possible. Note that the case 

�z

0w   coincides with the optimization of the propellant mass only. Table 3 is a summary of 

the characteristics of the optimal orbits found using the cost function in Eq. (23), for several values of the weight w. 

These values have been determined by trial and error, and considering the relative order of magnitude of the two 

addends in the cost function (in non-dimensional units). As expected, the orbits flatten at the cost of some additional 

propellant mass. It was also found that it is more expensive to flatten orbits when high values of 0  are considered. For 

values of w higher that those presented in the table, the orbit becomes substantially flat, stabilizing to a distance of about 

0.0174 AU. As expected, this value represents the optimal distance for a flat pole-sitter orbit, as found before, and 

coincides with the minimum of the curve plotted in Fig. 7. 
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Table 3 Summary of optimal orbits obtained minimizing a weighed sum of propellant mass and velocity in z. 

Different values of the weight w are considered. Initial mass is m0 = 1000 kg, ȕ0 = 0.05. 

w   min
t

d t , AU  max
t

d t , AU 
fm , kg 0propm m   max

t
T t , mN 

0 0.013087 0.023590 907.68 0.0923 141 
155 10


 0.014809 0.019875 905.40 0.0946 135 
145 10
13

 0.017008 0.017920 901.00 0.0990 138 

1 10
13

 0.017270 0.017746 900.42 0.0996 140 

2 10  0.017410 0.017654 900.10 0.0999 139 

 

 

Fig. 17 A family of optimal orbits, for different values of the cost function weight w; ȕ0 = 0.05. 

III. Mass Budget 

Due to the additional complexity of the hybrid spacecraft, it is interesting to assess whether this system allows a 

lower initial mass  for a given payload mass 0m plm . To this aim, a preliminary mass budget is presented here, for 

different mission scenarios, considering a pure SEP spacecraft and a hybrid one. For sake of comparison, the 

technological assumptions are based on what was chosen in [8]. In that work, the authors computed the requirements for 

a spacecraft to be stationary in the Sun-Earth rotation frame, placed at 0.01831 AU above the North Pole at the summer 

solstice (hence above the Lagrange point L1), a solar sail with 0 0.03  , a payload mass of 100 kg, a SEP specific 

impulse of 3200 s, and a 5 year mission timeframe. Here a mission in which 0.maxd 01831 AU  is considered, therefore 

using a family of orbits like those in Fig. 16. 

The total spacecraft mass can be split as: 

  0 prop tank thrusters SEP gimbal rad s TF pl
m m m n m m m m m m         (24) 

where  is the propellant mass necessary for a given mission duration . The mass of the tanks is 

 [

propm

0.1 prop

missiont

tankm m 26]; the number of thrusters is 2thrustersn  , for redundancy and such that a second thruster can be used 

after the performance of the first has degraded (note that this is a conservative choice: a higher payload fraction is 
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obtained if only one engine could be used throughout the whole mission). The mass of the engine is 

,20 kg kWSEP SEP maxm  P  [15]. The maximum power  required by the SEP subsystem is computed as a function 

of the maximum thrust  required during the mission, in the following way: 

,SEP maxP

maxT
, 2SEP max max e SEPP T v  , where 

0.7SEP   is the efficiency of converting electrical power [27]. For the hybrid spacecraft, 0.3gimbal SEPm  m  [26]. Note 

that the gimbals not only have the task of titling the thrust vector as required, but also to compensate the thrust 

misalignment if two engines are used. For the pure SEP case, instead, 0.1gimbal SEPm m : in fact, there is no need to 

continuously steer the engine, but only to prevent thrust misalignment, and thus a simpler mechanism is foreseen. For 

the hybrid spacecraft, radiators are used to dissipate the excess of power that is generated by the TFSC when the SEP 

thrust is not at maximum; radiators are sized on the maximum excess power  produced by the TFSC during the 

mission: , and the coefficient is found using a specific power of 350 W/ m2 (value 

achievable in deep space [

,d maxP

,0.0086rad d maxm  kg/W P

28]), and a specific mass of 3 kg/m2, considering that the radiators can be mounted on the 

back side of the TFSC, sharing the structure. For the pure SEP case, there is no excess power as the solar panels can be 

tilted with respect to the Sun, to generate the required power only. The total sail area (highly reflective surface + TFSC) 

can be computed starting from the assumed values of 0  and , from Eq. 0m (4). The mass of the thin film solar cells is 

proportional to their area: TFm TF TFA , where 2m100 g
TF

   [7]. The area was conservatively assumed to be 5% of 

the total area of the sail [8]. Here, a more precise value can be estimated, as a function of the maximum power. In 

particular, for the pure SEP spacecraft, the solar panels are usually kept perpendicular to the Sun vector, and therefore 

the area of TSFC necessary to guarantee the required power is ,TF SE TFA P WP max  , with 0.05TF   due to the 

relatively low efficiency of the thin film, and energy flux density of the Sun 2m13 67 WW , considered constant at 1 

AU. In the hybrid spacecraft, instead, the TFSC are part of the reflective surface, and therefore their pitch with respect 

to the Sun vector is given by the clock angle of the sail 
maxT   at the instant when the maximum thrust is required. 

Consequently, in the hybrid case, the area of the TFSC shall be augmented according to 
, cos

maxTF TF T  SEP maxA P W . 

The area of the sail is simply s TFA A A  , and its mass is s s sAm  . s , the mass per unit area of the sail, or sail 

loading, is a critical parameter that depends on the solar sail technology. Currently, realistic values are on the order of 

25-30 g/m2 [9], but near-term technological developments should allow values of 10 g/m2 [29]. Ultra-thin (around 2 ȝm 

of thickness) sails are expected in the mid- to long-term timeframe [30]: they can lead, for large sails, to loadings of the 

order of 5 g/m2. 
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Eq. (24) can be solved, for example for , having assigned a payload mass, with an iterative method. Starting 

from an initial guess 

0m

0,guessm , at each iteration the optimal orbit is computed solving the optimal control problem 

described before for one year. The same orbit is used throughout the whole mission, and propm  is computed, to update 

the value of m for the following iteration, until convergence. 0  Table 4 presents two pole-sitter mission scenarios: a short 

mission (5 years), and a long mission (8 years). In both the cases, the payload mass to be carried is plm o 

allow comparison with previous work [

100 kg ,

0

 t

8]. Three different spacecraft were considered, for each scenario: a pure SEP, a 

near-term hybrid sail (sail loading of 7.5 g/m2) and a mid- to long-term hybrid sail (5 g/m2). The value of   was 

consequently selected for each case, to minimize the initial mass. 

For 5 years, the pure SEP spacecraft weighs about 465 kg at injection into the pole-sitter orbit: this value is 

comparable to the static equilibrium case above L1 that was presented in [8]. For the 5-year mission, the mid-term sail is 

not convenient, as the injection mass would be slightly higher (500 kg). A major improvement is found considering a 

lower sail loading, as in the long-term spacecraft: in this case, the initial mass drops to 411 kg. 

It is important to underline here that the saving in initial mass is not as important as what was found for the static 

equilibrium case, in which the initial mass for the hybrid spacecraft (with a sail loading of 10 g/m2) dropped to 288 kg 

[8]. This is due to the fact that at the summer solstice the total acceleration to be counterbalanced by the SEP and sail is 

minimum, with respect to that in other positions of the polar cone (see for example Fig. 10, in which the position of the 

static equilibrium spacecraft is at , corresponding to the summer solstice). Therefore, at that point, the 

contribution of the sail is maximized, and staying stationary in this position exploits this advantage during the whole 

mission. It can be deduced that following the North Pole of the Earth results in a more expensive trajectory, in terms of 

propellant mass, with respect to a stationary spacecraft in an equivalent equilibrium position above the L1 Lagrange 

point. 

0.5 yearst 

However, the improvement of the hybrid spacecraft with respect to the pure SEP spacecraft becomes important 

considering the longer 8-year mission. Note that  scales approximately linearly with 0m plm  (having fixed all the other 

parameters), while it scales approximately exponentially with . In this case, for pure SEP, a 3773 kg spacecraft 

and a maximum thrust of 660 mN is required. Instead, adding a mid-term sail brings these values down to 2968 kg and 

459 mN. As expected, further improvements are obtained for the long-term spacecraft. 

missiont

Furthermore, it was found that the pure SEP spacecraft option is not feasible if the mission duration is longer than 

about 8.5 years, and therefore for longer missions, the hybrid spacecraft is the only option. 
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Table 4 Mass budget for different mission durations and values of sail lightness number and sail loading for 

mpl = 100 kg. 

Spacecraft Pure SEP 
Mid-term 

hybrid 

Long-term 

hybrid 
Pure SEP 

Mid-term 

hybrid 

Long-term 

hybrid 

missiont , y 5 5 5 8 8 8 

s , g/m2 - 7.5 5 - 7.5 5 

0  0 0.02 0.04 0 0.02 0.04 

0m , kg 465 500 411 3773 2968 1210 

plm , kg 100 100 100 100 100 100 

propm , kg 257 225 162 2727 1784 651 

sm , kg - 48.7 53.6 - 289 158 

TFm , kg 2.67 3.77 3.13 21.6 22.4 9.23 

sA , m2 - 6497 10711 - 38570 31535 

TFA , m2 27 37.7 31.3 216 224 92.3 

 max T , mN 80 76 59 660 459 173 

 

It is interesting to note that, despite the benefit of the solar sail to the pole-sitter spacecraft, it is not as good as the 

benefit that the static equilibrium spacecraft above L1 receives [8]. However, it was shown that the hybrid spacecraft 

starts to be beneficial over the pure SEP for 27.5 g ms  . As a comparison, it was found [9] that, in the case of direct 

interplanetary transfers, the hybrid propulsion system decreased the payload mass fraction, with respect to pure SEP,  

only if 22 g ms  . Therefore, it can be concluded that the hybrid sail is more beneficial for the pole-sitter problem, 

and it is expected that near- to mid-term technology will be able to provide sails with loadings that can enable the hybrid 

pole-sitter mission. 

IV. Conclusions 

A novel concept of a hybrid solar sail/solar electric propulsion (SEP) pole-sitter spacecraft was proposed and 

discussed and optimal pole-sitter orbits were presented. The orbital dynamics of both the pure SEP case and the hybrid 

case were investigated and compared. A novel method for computing quasi-optimal orbits was developed, minimizing 

the thrust pointwise, by exploiting the solar sail. This approach was possible, through an inverse method, because of the 

particular constrained dynamics of the pole-sitter. It was found that constant-distance orbits have an optimal distance for 

minimum fuel consumption at about 0.017 AU. It was also found that tilting the orbit, such that the spacecraft is farther 

in summer than in winter, leads to additional propellant saving. Starting from these first guesses, optimal orbits were 

designed, to minimize the propellant fraction, for pure SEP and for different system lightness numbers. It was also 

shown that is possible to trade off either the maximum allowed distance from the Earth, or a requirement on the 

variation of the Earth polar distance, for some additional propellant. This could be useful to meet payload requirements. 
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To illustrate the advantage of the hybrid propulsion system over the conventional SEP spacecraft, the two options 

were compared in terms of initial mass needed to carry a fixed payload for a given mission duration. It was found that 

mid-term sail technology allows lower launch mass for long duration pole-sitter missions, and enables even longer 

missions, that are unfeasible with pure SEP. The combination of the two propulsion systems therefore allows propellant 

saving over the pure SEP spacecraft, enabling longer missions. 
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