Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

The effect of landscape heterogeneity and host movement on a tick-borne pathogen

Jones, E.O. and Webb, Steven and Ruiz-Fons, F.J. and Albon, S. and Gilbert, L. (2011) The effect of landscape heterogeneity and host movement on a tick-borne pathogen. Theoretical Ecology, 4 (4). pp. 435-448. ISSN 1874-1738

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Landscape heterogeneity can be instrumental in determining local disease risk, pathogen persistence and spread. This is because different landscape features such as habitat type determine the abundance and spatial distributions of hosts and pathogen vectors. Therefore, disease prevalence and distribution are intrinsically linked to the hosts and vectors that utilise the different habitats. Here, we develop a simplified reaction diffusion model of the louping-ill virus and red grouse (Lagopus lagopus scoticus) system to investigate the occurrence of a tick-borne pathogen and the effect of host movement and landscape structure. Ticks (Ixodes ricinus), the virus-vector, are dispersed by a virally incompetent tick host, red deer (Cervus elephus), between different habitats, whilst the virus infects only red grouse. We investigated how deer movement between different habitats (forest and moorland) affected tick distribution and hence prevalence of infected ticks and grouse and hence, the effect of habitat size ratio and fragmentation on infection. When habitat type has a role in the survival of the pathogen vector, we demonstrated that habitat fragmentation can have a considerable effect on infection. These results highlight the importance of landscape heterogeneity and the proximity and size of adjacent habitats when predicting disease risk in a particular location. In addition, this model could be useful for other pathogen systems with generalist vectors and may inform policy on possible disease management strategies that incorporate host movements.