
This version is available at https://strathprints.strath.ac.uk/29103/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Brief paper

SMC design for robust H_∞ control of uncertain stochastic delay systems

Lirong Huang *, Xuerong Mao
Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK

ARTICLE INFO

Article history:
Received 18 February 2009
Received in revised form 5 July 2009
Accepted 6 November 2009
Available online 24 November 2009

Keywords:
Sliding mode control
Stochastic systems
Time delay
Robust control
Finite-time stabilization

ABSTRACT

Recently, sliding mode control method has been extended to accommodate stochastic systems. However, the existing results employ an assumption that may be too restrictive for many stochastic systems. This paper aims to remove this assumption and present in terms of LMIs a sliding mode control design method for stochastic systems with state delay. In some cases, the proposed method provides a control scheme for finite-time stabilization of stochastic delay systems.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Sliding mode control (SMC) has various attractive features such as fast response, good transient performance, order reduction and, particularly, robust with matched uncertainties, and is well known to be an effective way to handle many challenging problems of robust stabilization. Over the past decades, SMC has been one of the most popular control methods among the control community and has found wide applications to automotive systems, observers design, chemical processes, electrical motor control, aero-engineering and so on (see, e.g., Choi (2007), Gouaisbaut, Dambrine, and Richard (2002), Hu, Ge, and Su (2004), Hu, Ma, and Xie (2008), Jafarov (2005), Li and Decarlo (2003), Utkin (1992), Utkin, Guldner, and Shi (1999), Edwards, Akoachere, and Spurgeon (2001), Oucheriah (2003) and the references therein). Generally speaking, SMC uses a discontinuous control law (relays) to force and restrict the state trajectories to a predefined sliding surface on which the system has some desired properties such as stability, disturbance rejection capability and tracking (see Gouaisbaut et al. (2002), Li and Decarlo (2003) and Utkin (1992)).

In recent years, there has been a growing interest in extension of SMC to accommodate stochastic systems (see, e.g., Chang and Chang (1999), Chang and Wang (1999a,b), Huang and Deng (2008a), Niu, Ho, and Lam (2005) and Niu, Ho, and Wang (2007, 2008)) since stochastic modelling has come to play an important role in many branches of science and engineering (see, e.g., Feng and Liu (1995), Kolmanovskii and Myshkis (1999) and Mao (2007)). For example, Niu et al. (2005) studied the integral SMC for the stochastic delay system

$$\dot{x}(t) = \left[(A + \Delta A(t))x(t) + (A_d + \Delta A_d(t))\Delta x(t - \tau(t)) \\
+ B(u(t) + f(x(t), t))\Delta t + D((C + \Delta C(t))(x(t) + \Delta C(t))x(t) \\
+ (C_d + \Delta C_d(t))x(t - \tau(t))\Delta t \right] \Delta t,$$

(1)

where it is assumed that there is matrix $G \in \mathbb{R}^{m \times n}$ such that

$$\det(GB) \neq 0 \quad \text{and} \quad GD = 0$$

(2)

with $\det(\cdot)$ denoting the determinant of a matrix. However, these existing results employ assumptions such as (2) on the structure of the control system such that their controller design do not need to deal with stochastic perturbation and hence they can use the SMC design method for deterministic systems (see Remark 1 and 4 in Huang and Deng (2008a)). These existing results may be considered as studies of SMC with stochastic perturbation in sliding mode. But such an assumption may be too restrictive for stochastic systems in many practical situations.

The main purpose of this paper is to remove this assumption. Moreover, in some cases, our design method provides a control scheme for finite-time stabilization of stochastic delay systems (see Remark 2 and the Example). Problems of finite-time stabilization of stochastic systems (Yang, Li, & Chen, 2009) are relatively seldom studied while those of deterministic systems have received much attention (see Huang, Lin, and Yang (2005) and

* This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor Emilia Fridman under the direction of Editor Ian R. Petersen.
* Corresponding address: Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow, G1 1XH, UK. Tel.: +44 0 141 548 3809; fax: +44 0 141 552 2079.
E-mail address: lirong.huang@strath.ac.uk (L. Huang).

0005-1098/ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2009.11.013
Hong, Wang, and Cheng (2006) and the references therein). Our proposed design method is presented in terms of LMIs (see Boyd, El Ghaoui, Feron, and Balakrishnan (1994)), which can be easily implemented.

2. Problem statement

Throughout the paper, unless otherwise specified, we will employ the following notation. Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P})$ be a probability space with a natural filtration $\{\mathcal{F}_t\}_{t \geq 0}$ and $\mathbb{E}[\cdot]$ be the expectation operator with respect to the probability measure. Let $W(t) = (W_1(t), \ldots, W_n(t))^T$ be an $n_\mathcal{F}$-dimensional Brownian motion defined on the probability space. If A is a vector or matrix, its transpose is denoted by A^T. If P is a square matrix, $P > 0$ ($P < 0$) means that P is a symmetric positive (negative) definite matrix of appropriate dimensions while $P \geq 0$ ($P \leq 0$) is a symmetric positive (negative) semidefinite matrix. I stands for the identity matrix of appropriate dimensions. Denote by $\lambda_M(\cdot)$ and $\lambda_m(\cdot)$ the maximum and minimum eigenvalue of a matrix respectively. Let $\| \cdot \|$ and $\| \cdot \|_1$ denote the Euclidean norm and 1-norm of a vector and their induced norms of a matrix respectively. Unnecessarily, matrices are assumed to have real entries and compatible dimensions. Let $h > 0$ and $C([-h, 0]; R^n)$ denote the family of all continuous R^n-valued functions ϕ on $[-h, 0]$ with the norm $\|\phi\| := \sup \{\|\phi(t)\|: -h \leq t \leq 0\}$. For $p > 0$, let $L^p([-h, 0]; R^n)$ be the family of all \mathcal{F}_0-measurable $C([-h, 0]; R^n)$-valued random variables such that $\mathbb{E}\|\phi\|^p < \infty$.

Let us consider an n-dimensional uncertain stochastic system with state delay

$$dx(t) = \left[A_0(t)x(t) + A_1(t)(x(t - h) + B(u(t) + \phi(t, x_0))) + B_1(u(t)) \right] dt + g(t, x(t)) dW(t),$$

$$z(t) = Cx(t) + Dv(t)$$

on $t \geq 0$ with initial data $x_0 = \{x(\theta): -h \leq \theta \leq 0\} = \xi \in \mathcal{L}^2([-h, 0]; R^n)$, where $x(t) \in R^n$ is the state vector; $u(t) \in R^m$ is the control input; $z(t) \in R^p$ is the controlled output; $v(t) \in R^p$ is the exogenous disturbance input belonging to $L^2([0, \infty); R^n)$; $h > 0$, time delay of the system, is a known number; B, B_1, C, D are constant matrices and B is of full column rank; $A_1(t), i = 0, 1$ are matrix functions with time-varying uncertainties described as $A_1(t) = A_{1i} + \Delta A_1(t)$, where $A_{1i}, i = 0, 1$ are known constant matrices while uncertainties $\Delta A_1(t)$ are assumed to be norm bounded, i.e.,

$$\Delta A_1(t) = L_1 F_1(t) E_1, \quad i = 0, 1$$

with known constant matrices L_1, E_1 and unknown matrix functions $F_1(t)$ having Lebesgue measurable elements and satisfying $F_1^T(t) F_1(t) \leq 1$ for all $t \geq 0$; matched uncertainty $\phi(t, x_0)$ satisfies

$$|\phi(t, x_0)| \leq k_\phi(|x(t)| + |x(t - h)|), \quad \forall t \geq 0$$

where k_ϕ is a nonnegative number; $g(t, x(t))$ may not be exactly known but there is a constant matrix G such that

$$\text{trace}(G^T(x(t)) g(t, x(t))) \leq |Gx(t)|^2$$

for all $t \geq 0$ (see, e.g., Chen, Guan, and Lu (2005) and Yue and Han (2005)). It is also assumed that pair (A_0, B), that is, there exists matrix $K_0 \in R^{m \times p}$ such that matrix $A_0 + BK_0$ is stable.

It is easy to verify that Eq. (3) with $u(t) = 0$ and $v(t) = 0$ has a unique solution (see, e.g., Mao (2002, 2007)). In this paper, we intend to design a sliding surface and a switching control law such that the state trajectories are drawn in finite time to the sliding surface with probability 1, on which system (3) and (4) is robustly mean-square exponentially stable with some prescribed disturbance attenuation $\gamma > 0$ (see Definition 2). It should be noted that, for simplicity only, we take a relatively simple model.

The proposed method can be easily extended to many systems such as those of large scale, with Markovian switching and time-varying and multiple delays (see Chang and Chang (1999), Chang and Wang (1999a,b), Chen et al. (2005), Niu et al. (2005, 2007, 2008) and Huang and Deng (2008a)).

At the end of this section, let us introduce the following definitions.

Definition 1 (Mao (2007)). Uncertain stochastic delay system (3) with $u(t) = 0$ and $v(t) = 0$ is said to be robustly mean-square exponentially stable if there is a positive constant λ such that

$$\limsup_{t \to \infty} \frac{1}{t} \log \mathbb{E}[x(t; \xi)]^2 \leq -\lambda$$

for all admissible uncertainties (5).

Definition 2. Uncertain stochastic delay system (3) and (4) is said to be robustly mean-square exponentially stable with disturbance attenuation $\gamma > 0$ if system (3) with $v(t) = 0$ is robustly mean-square exponentially stable and moreover, under zero initial condition,

$$\mathbb{E} \int_0^\infty |z(t)|^2 dt \leq \gamma^2 \mathbb{E} \int_0^\infty |v(t)|^2 dt$$

for all nonzero $v \in L_2[0, \infty)$ and admissible uncertainties (5).

For definitions of mean-square stability with a given disturbance attenuation γ, please see, e.g., Berman and Shaked (2006), Niu et al. (2007) and Xu and Chen (2002). Moreover, let us present the definition of finite-time stability of stochastic systems, which is consistent with that of deterministic systems (see, e.g., Bhat and Bernstein (2000), Huang et al. (2005) and Hong et al. (2006)).

Definition 3. The equilibrium $x = 0$ of uncertain stochastic delay system (3) with $u(t) = 0$ and $v(t) = 0$ is said to be pth ($p > 0$) moment finite-time stable if system (3) with $u(t) = 0$ and $v(t) = 0$ is pth moment stable and if for every $\xi \in \mathcal{L}^2([-h, 0]; R^n)$, there exists a settling time $T = T(\xi) > 0$ such that $0 < \mathbb{E}[x(t; \xi)]^p < \infty$ for all $0 \leq t < T$, $\lim_{t \to T^-} \mathbb{E}[x(t; \xi)]^p = 0$ and $\mathbb{E}[x(t; \xi)]^p = 0$ for all $T > t$.

For definition of pth moment stability, please see, e.g., Huang and Deng (2008b). We also cite the following well-known results that are useful for the development of this paper (see, e.g., Xu (1997) and Lükepohl (1996)).

Lemma 1. For any constant matrix $M \in R^{p \times p}$, inequality

$$2u^T M u \leq u^T G M G^T u + \frac{1}{r} v^T G^{-1} v, \quad u \in R^p, \quad v \in R^p$$

holds for any pair of symmetric positive definite matrix $G \in R^{p \times p}$ and positive number r.

Lemma 2. For a pair of constant matrices $G \in R^{p \times p}$ and $M \in R^{p \times q}$, if $G \geq 0$, then

$$\text{trace}(M^T G M) \leq \lambda_M(G) \text{trace}(M^T M).$$

3. Switching surface and control scheme design

This section is devoted to designing the sliding surface and the switching control law such that the task of this paper is fulfilled. We present the design method as follows.
Given constant $\gamma > 0$, assume that there exist matrices $X > 0$, $R > 0$, Y_0, Y_1 and positive numbers $\rho_0, \rho_l, \lambda_g, \xi_g$ such that
\[
\begin{bmatrix}
\phi_1 & \ast & \ast & \ast & 0 & \ast \\
X_1 I + Y_1^TR & -R & 0 & 0 & 0 & 0 \\
\frac{1}{\lambda_g}I & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{\rho_l}I & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
2R & + D^T CX & 0 & 0 & 0 & 0 & 0 & 0 & -I
\end{bmatrix} < 0, \tag{10}
\]
\[
\lambda_g I \leq X, \tag{11}
\]
and
\[
\begin{bmatrix}
-BB^T & XG^T \\
GX & -\xi_g I
\end{bmatrix} \leq 0, \tag{12}
\]
where $\phi_1 = A_0X + XA_0^T + BY_0 + Y_0^TR + R + \rho_l A_0 L_0^T + \rho_l L_0 A_1^T$, $\phi_2 = -\gamma^2 I + D^T D$ and entries denoted by \ast can be readily inferred from symmetry of the matrix. Let $P = X^{-1}$. It is easy to find $\xi_g > 0$ such that
\[
PBB^T P \leq \xi_g I. \tag{13}
\]
And then let
\[
\beta = \frac{1}{2} \xi_g \xi_g. \tag{14}
\]
In this work, we choose the switching surface as a linear function of the current states
\[
s(t) = s(t, x(t)) = B^T P x(t) = 0 \tag{15}
\]
for all $t \geq 0$. Note that matrix B is of full column rank and matrix $P > 0$. It is easy to see that $B^T P B > 0$.
\[
B^T P B > 0. \tag{16}
\]
Moreover, function $s : \mathbb{R}^m \rightarrow \mathbb{R}^m$ is defined by
\[
\text{sgn}(u) = \begin{bmatrix}
\text{sgn}(u_1) & \text{sgn}(u_2) & \cdots & \text{sgn}(u_m)
\end{bmatrix}^T, \tag{17}
\]
where
\[
\text{sgn}(u_i) = \begin{cases}
1, & u_i > 0 \\
0, & u_i = 0 \\
-1, & u_i < 0
\end{cases}
\]
for $i = 1, 2, \ldots, m$. Since time delay $\tau > 0$ is known, the past state $x(t - h)$ can be used in the control law (see, e.g., Gouaisbaut et al. (2002), Li and Decarlo (2003), Niu et al. (2005) and Oucheriah (2003)). In this case, we design the switching control law as follows
\[
u(t) = - (B^T P B)^{-1} [\beta s(t) + u_1(t) + u_2(t)] \tag{18}
\]
for all $t \geq 0$, where $u_1(t) = B^T P A_0 x(t) + A_1 x(t - h)$ and $u_2(t) = [\alpha + \rho(t) \text{sgn}(s(t))]$ with $\alpha > 0$ and
\[
\rho(t) = |B^T P L_0| |E_0 x(t)| + |B^T P L_1| |E_1 x(t)| + k_0 |B^T P| (|x(t)| + |x(t - h)|) + |B^T P| |B_n v(t)|. \tag{19}
\]

4. Reachability analysis

In this section, we consider reachability of the sliding surface (15).

Theorem 1. The state trajectories of system (3) synthesized with switching control (18) are drawn to sliding surface (15) in finite time almost surely, or say, with probability 1.

Proof. Without loss of generality, assume $|s(0)| > 0$. Define a stopping time
\[
t_\varepsilon = \inf \{ t \geq 0 : s(t) = 0 \}. \tag{20}
\]
We need to prove that there exists $0 < t_\varepsilon < \infty$ such that $t_\varepsilon \leq t_\varepsilon$ a.s., or say, $P(t_\varepsilon \leq t_\varepsilon) = 1$.

Let us consider function $U(t) = s^T(t) s(t)$ for all $t \geq 0$. By Itô’s formula, we have
\[
dU(t) = LU(t) dt + 2s^T(t) B P g(t, x(t)) dW(t), \tag{21}
\]
where
\[
LU(t) = 2s^T(t) B^T P [A_0 x(t) + A_1 x(t - h)] + B u(t) + \phi(t, x_t) + B_n v(t)\]
\[
+ \text{trace}[g^T(t, x(t)) PBB^T P g(t, x(t))]. \tag{22}
\]
Substitution of (18) into (22) yields
\[
LU(t) = 2s^T(t)B^T P [\Delta A_0 x(t) + \Delta A_1 x(t - h)] + B \phi(t, x_t) + B_n v(t) \]
\[
- 2\rho(t) s^T(t) s(t) - 2\alpha s^T(t) \text{sgn}(s(t)) \]
\[
- \text{trace}[g^T(t, x(t)) PBB^T P g(t, x(t))]. \tag{23}
\]
Inequality $|s(t)|_1 \geq |s(t)|$ is used in the last step of inequality (23). But LMI (12) implies
\[
G^T G \leq \xi_g PBB^T P. \tag{24}
\]
Combination of Lemma 2 and inequalities (7), (13) and (24) gives
\[
\begin{align*}
&\text{trace}[g^T(t, x(t)) PBB^T P g(t, x(t))]
\leq \xi_g \text{trace}[g^T(t, x(t)) g(t, x(t))]
\leq \xi_g \text{trace}[g^T(t, x(t)) g(t, x(t))]
\leq \lambda_g \xi_g \text{trace}[g^T(t, x(t)) g(t, x(t))]
\leq 2\beta s^T(t) s(t).
\end{align*}
\]
Inequalities (23) and (25) imply
\[
LU(t) \leq -2\alpha \sqrt{U(t)}, \quad \forall t \geq 0. \tag{26}
\]
But, by Itô’s formula, this yields
\[
L|s(t)| = LU(t) \leq -\alpha t, \tag{27}
\]
and hence
\[
E[|s(t)|] \leq E[|s(0)|] - \alpha t, \tag{28}
\]
which implies $E[|s(t)|]$ converges to zero in finite time. Specifically, there is $t_\varepsilon = \frac{\alpha}{\rho} > 0$ such that $E[|s(t)|] = 0$ for all $t \geq t_\varepsilon$, where $\rho_0 = E[|s(0)|] < \infty$. This implies $E[|s(t)|] = 0$ and hence $|s(t)| = 0$ a.s., or say, $P(|s(t)| = 0) = 1$ for all $t \geq t_\varepsilon$. For any $\varepsilon > 0$, suppose that $P(t_\varepsilon > t_\varepsilon) \geq \varepsilon$, then $P(|s(t)| > \varepsilon) \geq \varepsilon$, which leads to a contradiction. Therefore we have $t_\varepsilon \leq t_\varepsilon$ almost surely. The proof is complete. \qed

Remark 1. It is observed that we may choose $\beta = 0$ when assumption $B^T P g(t, x(t)) = 0$ (see Chang and Chang (1999), Chang and Wang (1999a,b), Huang and Deng (2008a) and Niu et al. (2005), Niu et al. (2007, 2008)) holds.
Remark 2. In the case when \(m = n \), the design method (18) proposes a control scheme for 1st moment finite-time stabilization of stochastic delay system (3) (see Definition 3).

5. Stability of sliding mode

Since it has been shown that the state trajectories of closed-loop system (3) and (18) are drawn to sliding surface (15) in finite time, we proceed to discuss stability of the sliding mode. Let us rewrite system (3) in the following form

\[
dx(t) = \left[\begin{array}{c} \dot{\overline{A}}_0(t)x(t) + \dot{\overline{A}}_1(t)x(t - h) + B(u(t) + \overline{\phi}(t, x_t)) \\ + B_v(v(t)) \end{array} \right] dt + g(t, x(t))dW(t),
\]

where \(\dot{\overline{A}}_0(t) = \overline{A}_0 + \Delta A_0(t) = (A_0 + BK_0) + \Delta A_0(t) \), \(\dot{\overline{A}}_1(t) = \overline{A}_1 + \Delta A_1(t) = (A_1 + BK_1) + \Delta A_1(t) \). The control gains \(u(t) = (\overline{A}_0 + \overline{A}_1)x(t - h) \) and matrices \(K_i, i = 0, 1 \), are to be determined.

Remark 3. System (3) may also be rewritten in the form of (see, e.g., Li and Decarlo (2003))

\[
dx(t) = \left[\begin{array}{c} \dot{\overline{A}}_0(t)x(t) + \dot{\overline{A}}_1(t)x(t - h) + B(u(t) + \overline{\phi}(t, x_t)) \\ + B_v(v(t)) \end{array} \right] dt + g(t, x(t))dW(t),
\]

where \(\dot{\overline{A}}_0(t) = \overline{A}_0 + \Delta A_0(t) = (A_0 + BK_0) + \Delta A_0(t) \), \(\dot{\overline{A}}_1(t) = \overline{A}_1 + \Delta A_1(t) = (A_1 + BK_1) + \Delta A_1(t) \), (32) may be somewhat misleading that control law (18) is changed. In fact, control commands are always input as the scheme (18). Note that control scheme (18) is different from that in Li and Decarlo (2003) even in the case when \(\beta = 0 \) (see Remark 1). At this point, system (29) is clear to show that part of the system dynamics is treated as perturbation (but not counteracted by control input). This may also help highlight the advantage of SMC that sliding mode dynamics is insensitive to matched uncertainties.

Remark 4. It should be stressed that, unlike many cases in references, matrices \(K_0 \) and \(K_1 \) are not feedback gain matrices. As a matter of fact, there is no \(K_0 \) nor \(K_1 \) in control scheme (18). Matrices \(BK_0 \) and \(BK_1 \) are introduced into the stability analysis of sliding mode because the sliding surface and the Lyapunov–Krasovskii functional are chosen as (15) and (31) respectively, by which we take advantage of their relationship on the sliding surface \(s(t) = B^T P x(t) = 0 \).

In this section, we consider stability of dynamics of the sliding mode, that is, system (29) restricted on sliding surface (15).

Theorem 2. Given constant \(\gamma > 0 \), sliding mode dynamics of system (29) and (4) on sliding surface (15) is robustly mean-square exponentially stable with disturbance attenuation \(\gamma \) provided that LMIs (10) and (11) are satisfied.

Proof. First, let us consider stability of system (29) with \(v(t) = 0 \) restricted on sliding manifold (15). Choose a Lyapunov–Krasovskii functional candidate as

\[
V(t) = x^T(t)P x(t) + \int_{t-h}^{t} x^T(\tau)Q x(\tau) d\tau
\]

for all \(t \geq t_0 = t_0 + h \), where \(P = X^{-1} \) and \(Q = PRP \) while matrices \(X > 0 \) and \(R > 0 \) are determined by LMIs (10) and (11). By Itô’s formula, we have

\[
dV(t) = \L V(t)dt + 2x^T(t)P g(t, x(t))dW(t),
\]

where

\[
\L V(t) = 2x^T(t)P \dot{\overline{A}}_0(t)x(t) + \dot{\overline{A}}_1(t)x(t - h) \\
+ 2x^T(t)PB(u(t) + \overline{\phi}(t, x_t)) \\
+ \text{trace}[g^T(t, x(t))Pg(t, x(t))]
\]

\[
+ x^T(t)Q x(t) - x^T(t - h)Q x(t - h)
\]

\[
= 2x^T(t)P \dot{\overline{A}}_0(t)x(t) + \dot{\overline{A}}_1(t)x(t - h) \\
+ \text{trace}[g^T(t, x(t))Pg(t, x(t))]
\]

\[
+ x^T(t)Q x(t) - x^T(t - h)Q x(t - h),
\]

(33)

since system (29) is restricted on sliding surface (15). By Lemma 2, we obtain

\[
\L V(t) \leq 2x^T(t)P \dot{\overline{A}}_0(t)x(t) + \dot{\overline{A}}_1(t)x(t - h) \\
+ \lambda_M(\overline{\phi}(t, x(t))g(t, x(t))
\]

\[
+ x^T(t)Q x(t) - x^T(t - h)Q x(t - h).
\]

(34)

Moreover, LMI (11) implies

\[
P \leq \lambda_\gamma^{-1}I.
\]

(35)

Substitution of (7) and (35) into (34) yields

\[
\L V(t) \leq 2x^T(t)P \dot{\overline{A}}_0(t)x(t) + \dot{\overline{A}}_1(t)x(t - h) \\
+ x^T(t)(\lambda_\gamma^{-1}G^T G)x(t) + x^T(t)Q(t)
\]

\[
- x^T(t - h)Q x(t - h)
\]

\[
= x^T(t)(\lambda_\gamma^{-1}G^T G + Q)x(t)
\]

\[
+ 2x^T(t)P A_0 x(t) - x^T(t - h)Q x(t - h)
\]

\[
+ 2x^T(t)P A_0 x(t - h).
\]

(36)

But, by Lemma 1, we see

\[
2x^T(t)P A_0 x(t) \leq x^T(t)\beta_0 P L_0^T L_0 P x(t)
\]

\[
+ x^T(t)\beta_0 L_0^T E_0 x(t).
\]

(37)

This implies

\[
\L V(t) \leq x^T(t)(\lambda_\gamma^{-1}G^T G + Q
\]

\[
+ \beta_0 L_0^T P + \beta_0 L_0^T E_0 + \beta_1 L_1^T P)x(t)
\]

\[
+ 2x^T(t)P A_0 x(t - h)
\]

\[
+ x^T(t - h)(-Q + \beta_1 L_1^T E_0 x(t - h)
\]

\[
\leq \begin{bmatrix} x^T(t) & x^T(t - h) \end{bmatrix} \Omega \begin{bmatrix} x^T(t) & x^T(t - h) \end{bmatrix}^T,
\]

(39)

where

\[
\Omega = \begin{bmatrix} \Omega_1 & \Omega_2 \\ \Omega_2^T & \Omega_1^T \end{bmatrix} = \begin{bmatrix} P(A_1 + BK_1) & \Omega_1 \\ \Omega_1^T & -Q + \beta_1 L_1^T E_0 \end{bmatrix}
\]

(40)

with \(\Omega_1 = P(A_0 + BK_0) + (A_0 + BK_0)^T P + \lambda_\gamma^{-1}G^T G + Q + \beta_0 P L_0^T P + \beta_1 L_1^T E_0 + \beta_1 L_1^T L_1 P \).

Let us look at matrix \(\Gamma \) given as follows

\[
\Gamma = \begin{bmatrix} G & 0 & 0 & 0 & 0 \\ A_0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ E_0 & 0 & 0 & 0 & 0 \\ 0 & E_1 X & 0 & 0 & -\beta_1 I \end{bmatrix}
\]

(41)
where \(\Gamma_1 = A_0X + XA_0^T + BY_0 + Y_0^TB^T + R + \beta_0L_0L_0^T + \beta_1L_1L_1^T \). Observe that \(\Gamma \) is a principal submatrix of matrix \(\Theta \) given in (10).

By Schur complement lemma, LMI (10) implies \(\Gamma < 0 \). But, also by Schur complement lemma, this implies \(\Omega < 0 \), where \(\Omega \) is given as

\[
\hat{\Omega} = \begin{bmatrix}
\frac{\hat{\Lambda}_1}{\hat{\lambda}} & XA_0 + BY_0 \\
Y_0^TB^T - \hat{\lambda}XE_1^T & -R + \beta_0^{-1}XE_1^T XE_1
\end{bmatrix}
\]

with \(\hat{\Lambda}_1 = A_0X + XA_0^T + BY_0 + Y_0^TB^T + \lambda_0^{-1}XG^T G \). Let \(K_i = Y_i P, i = 0, 1 \), then it is observed \(\hat{\Omega} = D_i\hat{\Omega}D_i^T \), where \(D_i = \text{diag}(P, P) \). This implies \(\Omega < 0 \) and hence

\[
\mathbb{L}V(t) \leq -\lambda_0|v(t)|^2,
\]

where \(\lambda_0 = \lambda_m(-\Omega) > 0 \).

According to (31), we have

\[
\alpha_0|v(t)|^2 \leq V(t) \leq \alpha_1|v(t)|^2 + \alpha_2 \int_{t-h}^{t} |x(\tau)|^2 d\tau
\]

for all \(t \geq t_0 \), where \(\alpha_0 = \lambda_m(P), \alpha_1 = \lambda_M(P) \) and \(\alpha_2 = \lambda_M(Q) \). Choose \(\delta > 0 \) such that

\[
\delta(\alpha_1 + \alpha_2 e^{h\delta}) \leq \lambda_0.
\]

By Itô's formula, we have

\[
d[|e^{\alpha_0 t}V(t)|] = e^{\alpha_0 t}[\hat{\varepsilon}_0 V(t) + \mathbb{L}V(t)] dt + 2e^{\alpha_0 t} x^T(t) P g(t, x(t)) dW(t).
\]

Integrating from \(t_0 \) to \(t \) and taking expectation on both sides of (46) yield

\[
\mathbb{E}[e^{\alpha_0 t}V(t)] - \mathbb{E}[e^{\alpha_0 t_0}V(t_0)] = \int_{t_0}^{t} e^{\alpha_0 \tau} \mathbb{E}[\hat{\varepsilon}_0 V(\tau) + \mathbb{L}V(\tau)] d\tau
\]

\[
\leq \int_{t_0}^{t} e^{\alpha_0 \tau} \left[\mathbb{E}[\varepsilon_0 \varepsilon_0^T |x(\tau)|^2] + \hat{\varepsilon}_0 \alpha_0 \int_{\tau-h}^{\tau} |x(\tau)|^2 d\tau \right] d\tau
\]

\[
- \lambda_0 \mathbb{E}[|x(\tau)|^2] d\tau.
\]

Since

\[
\int_{\tau-h}^{\tau} |x(\tau)|^2 d\tau \leq \int_{\tau-h}^{\tau} |x(\tau)|^2 d\tau \int_{\tau}^{\tau+h} e^{\alpha_0 \tau} d\tau
\]

\[
\leq \hat{v}_0 e^{\alpha_0 \tau} \int_{\tau-h}^{\tau} |x(\tau)|^2 e^{\alpha_0 \tau} d\tau
\]

\[
\leq \hat{v}_0 e^{\alpha_0 \tau} \int_{\tau-h}^{\tau} |x(\tau)|^2 e^{\alpha_0 \tau} d\tau \leq \hat{v}_0 e^{\alpha_0 \tau} \int_{\tau-h}^{\tau} |x(\tau)|^2 d\tau,
\]

it follows

\[
e^{\alpha_0 t} \mathbb{E}[V(t)] \leq e^{\alpha_0 t_0} \mathbb{E}[V(t_0)] + \int_{t_0}^{t} e^{\alpha_0 \tau} \left[\varepsilon_0 (\alpha_1 + \alpha_2 e^{h\delta}) - \lambda_0 \right] \mathbb{E}[|x(\tau)|^2] d\tau
\]

\[
+ \hat{v}_0 e^{\alpha_0 \tau} \int_{\tau-h}^{\tau} \mathbb{E}[|x(\tau)|^2] d\tau
\]

\[
\leq C_0,
\]

where

\[
C_0 = [\alpha_0 e^{\alpha_0 t_0} + \alpha_2 h(e^{\alpha_0 t_0} + e^{\alpha_2 e^{h\delta}})] \sup_{t \leq t_0} \mathbb{E}[|\theta|^2].
\]

So we have

\[
\alpha_0|v(t)|^2 \leq \mathbb{E}[V(t)] \leq C_0 e^{-\gamma t}, \quad \forall t \geq 0
\]

or

\[
\limsup_{t \to \infty} \frac{1}{t} \log \mathbb{E}[|x(t; \xi)|^2] \leq -\varepsilon_0.
\]

The mean-square exponential stability of the sliding mode dynamics has been proved. In fact, by Theorem 6.2, p. 175, Mao (2007) or Theorem 2.2, Mao (1996), (50) also implies almost sure exponential stability. We proceed to show

\[
\mathbb{E} \int_{t_0}^{\infty} |z(t)|^2 dt \leq \gamma^2 \int_{t_0}^{\infty} |u(t)|^2 dt
\]

for all nonzero \(v \in L_2(t_0, \infty) \) and admissible uncertainties (5) under zero initial condition \(x(\theta) = 0 \) for all \(\theta \) in \([0 - h, t_0] \).

For prescribed constant \(\gamma > 0 \), define the performance index function

\[
J(t) = \int_{t_0}^{t} \left[z^T(\tau) z(\tau) - \gamma^2 v^T(\tau) v(\tau) \right] d\tau
\]

for all \(t > t_0 \). Let

\[
Y(t) = J(t) + V(t), \quad \tilde{J}(t) = \mathbb{E}J(t), \quad \tilde{Y}(t) = \mathbb{E}Y(t).
\]

Obviously, \(Y(t) \geq \tilde{J}(t) \) and \(\tilde{Y}(t) \geq \tilde{J}(t) \) for all \(t > t_0 \). Since \(x(\theta) = 0 \) for all \(\theta \) in \([0 - h, t_0] \), by Dynkin’s formula (see, e.g., Corollary 6.3.2, p. 142, Klebaner (1998)), we have

\[
\mathbb{E}V(t) = \mathbb{E} \int_{t_0}^{t} \mathbb{L}V(\tau) d\tau, \quad \forall t > t_0
\]

and therefore

\[
\tilde{Y}(t) = \mathbb{E} \int_{t_0}^{t} \left[z^T(\tau) z(\tau) - \gamma^2 v^T(\tau) v(\tau) + \mathbb{L}V(\tau) \right] d\tau
\]

\[
= \mathbb{E} \int_{t_0}^{t} \left[x^T(\tau) x(\tau) - \gamma^2 v^T(\tau) v(\tau) \right] \Omega_v d\tau
\]

\[
\times \left[x^T(\tau) x(\tau) - \gamma^2 v^T(\tau) v(\tau) \right] d\tau,
\]

where

\[
\Omega_v = \begin{bmatrix}
\Omega_{v_1} & P(A_1 + BK) \\
(KP^T + A_1)P & -Q + \beta_0^{-1}E_1^T E_1
\end{bmatrix}
\]

\[
\begin{bmatrix}
PB_v & C^T D
\end{bmatrix}
\]

with \(\Omega_{v_1} = P(A_0 + BK_0) + (A_0 + BK_0)^T P + \lambda_0^{-1} G^T G + Q + \beta_0 L_0 P + \beta_0^{-1} E_1^T E_0 + \beta_1 L_1 L_1^T P + C^T C \).

Using similar techniques as above, we find

\[
\Theta < 0 \Rightarrow \Omega_v < 0.
\]

But this implies

\[
\tilde{J}(t) \leq \tilde{Y}(t) \leq -\lambda_v \int_{t_0}^{t} |v(\tau)|^2 d\tau, \quad \forall t \geq t_0
\]

with \(\lambda_v = \lambda_m(-\Omega_v) > 0 \), which completes the proof.

6. Example

Let us consider a water-quality dynamic model subject to environmental noise (see Example 4.2, p. 157, Mahmoud (2000)).

\[
dx(t) = \left[A_0 x(t) + A_1 (x(t - h) + Bu(t) + B_v v(t)) \right] dt + g(t, x(t)) dW(t).
\]

\[
z(t) = Cx(t)
\]
with
\[A_0 = \begin{bmatrix} -1 & 1 \\ -2 & -3 \end{bmatrix}, \quad L_0 = \begin{bmatrix} 0.6 & -0.2 \\ 0 & 0.8 \end{bmatrix}, \quad F_0 = \begin{bmatrix} 0 & 0.4 \\ 0.2 & 0.2 \end{bmatrix}, \]
\[A_1 = \begin{bmatrix} 0 & -0.1 \\ 0.5 & 1 \end{bmatrix}, \quad L_1 = \begin{bmatrix} 0.25 \quad 0 \quad 0 \quad 0 \\ 0 \quad 0 \quad 0 \quad 0.2 \end{bmatrix}, \]
\[F_1 = \begin{bmatrix} 0.7 \sin(t) \\ 0.3 \sin(3t) \end{bmatrix}, \]
\[F_0(t) = \begin{bmatrix} 0.5 \sin(2t) \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0.4 \sin(t) \end{bmatrix} \]
and
\[B = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0.5 \end{bmatrix}, \quad B_v = \begin{bmatrix} 0.1 \\ 0 \\ 0.1 \end{bmatrix}, \quad C = \begin{bmatrix} 0.5 \\ 0 \\ 0.5 \end{bmatrix}. \]

Remark 2: For Theorem 1, we see that our method provides a robust control scheme which yields sliding mode trajectories of system (58) in finite time, on which the sliding mode is robustly mean-square exponentially stable with disturbance attenuation \(\gamma = 1 \). The curves given in Figs. 1–5 are the result of a simulation with initial condition \(x(t) = 0 \), design parameter \(\alpha = 10^{-3} \), initial condition \(x(\theta) = [10 \ 10]^T, \theta \in [-h, 0] \), and time delay \(h = 10^2 \). The curve of mean square of 1000 samples is given in Figs. 6 and 7.

7. Conclusion

This paper proposes a SMC design for robust \(H_\infty \) control for uncertain stochastic delay systems. The proposed method removes a restriction in the existing results. The idea in this paper may also be applied in an alternative way to linear stochastic delay systems with \(m < n \). Since pair \((A_0, B) \) is controllable and matrix \(B \) is of full column rank, system (3) can be transformed to a variant...
of canonical controller-type form (see Remark 4 Huang and Deng (2008a)). This may be considered as a decomposition into two interconnected subsystems, one of which, denoted by subsystem $y_2(t) \in \mathbb{R}^n$, includes control input $u(t)$ and the other denoted by subsystem $y_1(t) \in \mathbb{R}^{n-m}$ is free of input. If the sliding mode is chosen as $s(t) = Sy_2(t) = 0$, where S is a nonsingular matrix, then the condition for reachability of sliding mode can be figured out from the subsystem $y_2(t)$ while the condition for stability of sliding mode is indeed that for stability of subsystem $y_1(t)$ with $y_2(t) = 0$.

It is noted that the case when state delay appears in diffusion is not considered in this paper. In that case, (23) involves a positive definite function with respect to the delay states such that control law (18) may not guarantee that the state trajectories will be drawn onto sliding surface (15) in finite time. This is one of the problems of SMC for stochastic delay systems that are to be studied.

Acknowledgments

The authors gratefully acknowledge the reviewers’ comments and suggestions. The authors would like to thank the financial support from UK ORSAS and University of Strathclyde.

References

