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Abstract. We examine the stability-instability behaviour of a polynomial difference equa-

tion with state-independent, asymptotically fading stochastic perturbations. We find that

the set of initial values can be partitioned into a stability region, an instability region,

and a region of unknown dynamics that is in some sense “small”. In the first two cases,

the dynamic holds with probability at least 1− γ, a value corresponding to the statistical

notion of a confidence level. Aspects of an equation with state-dependent perturbations

are also treated.

When the perturbations are Gaussian, the difference equation is the Euler-Maruyama dis-

cretisation of an Itô-type stochastic differential equation with solutions displaying global

a.s. asymptotic stability. The behaviour of any particular solution of the difference equa-

tion can be made consistent with the corresponding solution of the differential equation,

with probability 1 − γ, by choosing the stepsize parameter sufficiently small. We present

examples illustrating the relationship between h, γ and the size of the stability region.
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1 Introduction

The global a.s. asymptotic stability of solutions of nonlinear stochastic differ-
ence equations has been widely discussed in the literature. The most relevant
publications are: [1, 2, 3, 4, 5, 7, 14, 15]. However, little attention has been
paid to local stability for such equations. An early attempt to address local
dynamics in an equation with bounded noise can be found in Fraser et al [9];
general results for equations with fading, state independent noise may be
found in [1].
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In this paper we consider the local dynamics of

Xn+1 = Xn − hβXn|Xn|ν +
√

hσnξn+1, n ∈ N,

X0 ∈ R.
(1)

Here, {ξn}n∈N is a sequence of independent random variables, each with zero
mean, unit variance and distribution function Ψn. The constants β and ν
are positive real numbers.

In [3], a global stability result was proven for the equation

Xn+1 = Xn − f(Xn) + σnξn+1, n ∈ N, X0 ∈ R, (2)

with globally Lipshitz f and square summable {σn}n∈N. The analysis was
based on a particular semi-martingale decomposition (see [4] and Liptser &
Shiryaev [13]). However, by departing from this technique, and treating the
stochastic term as a perturbation of the dynamics of a deterministic equation,
it became possible in [1] to show that neither the global Lipschitz condition
nor the summation condition are necessary for local asymptotic stability.
Instead, it is only necessary that f be locally Lipschitz continuous and that
limn→∞ σnξn+1 = 0 a.s.; this latter reduces to a summation condition on the
tails of the distribution functions Ψn.

Under these weaker conditions, it was proved in particular in [1] that
global asymptotic stability is impossible for solutions of (1). [1] concludes
that with probability close to one, limn→∞Xn = 0 when the initial value X0

is small, and limn→∞Xn = ∞ when X0 is big. In this paper, we seek to
improve upon these results, giving a more detailed picture of the dynamics
of (1).

When {ξn}n∈N is an independent sequence of standard Normal random
variables, (1) is the uniform Euler-Maruyama discretisation of the Itô-type
stochastic differential equation

dX(t) = −βX(t)|X(t)|νdt + σ(t)dW (t), t ≥ 0, X(0) ∈ R. (3)

Here, (W (t))t≥0 is a standard Brownian motion and the continuous process
(σ(t))t≥0 satisfies limt→∞ σ2(t) ln t = 0. Chan & Williams [8] showed that
all solutions of (3) satisfy limt→∞X(t) = 0 a.s. By contrast, the description
of the dynamics of (1), given in [3] and refined in [1], is incomplete.

In this paper we are able to describe the behaviour of Xn for all X0 ∈ R,
with the exception of two intervals with ‘small’ measure. We define a basin of
attraction A ⊂ R for the equilibrium at zero with a probability of 1−γ. This
probability corresponds to the statistical notion of confidence level, and γ may
be assigned the values 0.1, 0.05 or 0.01 in practice. The same method allows
us to define an instability region B ⊂ R. The absolute values of solutions
originating in B have infinite limits at infinity, with probability 1−γ. Finally,
we will show that there exists a region of unknown behaviour, C ∈ R, which
does not overlap with A or B. A, B and C constitute a partition of R.
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All three regions depend on the parameter h. By choosing h small enough,
the measure of the region of unknown behaviour, C, can be made arbitrarily
small. Additionally, for any initial value X0 ∈ R, and for any confidence
level 1 − γ, we can choose h small enough that the resulting solution of (1)
is asymptotically stable with probability 1 − γ. Thus the value of the step
parameter h allows us to control the level of correspondence between the
observed behaviour of the difference equation (1) and the known behaviour
of the differential equation (3). In fact for a given initial value X0, we can
explicitly calculate an upper bound on h that is sufficient to ensure a stable
trajectory with a given confidence level 1 − γ. We give examples of such
calculations in Section 6, for various distribution types.

The ability to calculate values for h that give asymptotic stability with
probability 1− γ has implications for numerical analysis. Recall that all so-
lutions of (3) are a.s. asymptotically stable. In theory, in order to provide
a numerical simulation that reflects the ‘true’ behaviour of a solution of (3)
we simply calculate the appropriate stepsize h and simulate a solution of (1).
However, a practical implementation of (1) on a finite-state machine, using
a pseudo-random approximation of Gaussian numbers, shows that the theo-
retical analysis in this paper is in fact highly conservative. We demonstrate
this using numerical examples in Section 7, where we also discuss some of
the challenges involved in simulating the probability of stability of solutions
of (1) when the rate of decay of {σn}n∈N is slow.

We apply the same techniques to a stochastic difference equation with
state-dependent perturbation:

Xn+1 = Xn − hβXn|Xn|ν +
√

hσn|Xn|ν1ξn+1, n ∈ N,

X0 ∈ R,
(4)

where ν1 is a positive real number. The resultant analysis is less complete.
As a final comment, we note that, for equations with state independent

perturbations like (1), it is incorrect to say ‘Xn(ω) asymptotically stable’
when limn→∞Xn(ω) = 0, since (1) does not have an equilibrium solution
at zero. However, we persist in using this nomenclature for two reasons.
First, we are investigating the effect of noisy input on the dynamics of a
deterministic equation that does have an equilibrium solution at zero. So
although the inclusion of noise destroys the stable equilibrium, solutions of
the perturbed equation can still behave as though it was there. Second,
equations with state-dependent perturbations like (4) do have an equilibrium
solution at zero; we wish to avoid distracting changes in terminology.

The paper is organized as follows. In Section 2, we set out the assumptions
and analysis upon which the remainder of the paper relies. In Subsection 2.1,
we impose the requirement that the stochastic perturbation {σnξn+1}n∈N,
converge to zero a.s. Because of this we can estimate it by some non-random
number on an event with probability close to one. In Subsection 2.2 we sum-
marise certain stability and instability results from [1] which are necessary
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for the proof of Theorem 3.1 in Section 3. In Subsection 2.3 we describe
the essential properties of the unperturbed mapping given by the right hand
side of (1). Finally, in Subsections 2.4 and 2.5 we use our ability to estimate
the noise term to find intervals, centred on zero, which are invariant under
perturbed versions of that mapping.

In Section 3 we present and prove the main result of the paper, describing
the stability and instability behaviour of solutions of (1). A similar analysis
is performed in Section 4 for solutions of (4).

In Section 5 we show how, given γ ∈ (0, 1), a non-random number j(γ)
that estimates the noise term σnξn+1, with probability 1− γ, may be calcu-
lated. We perform these calculations for perturbations with Normal distri-
butions, and for perturbations with polynomial-tailed distributions.

In Section 6 we find explicit formulae that allow us to calculate the maxi-
mum stepsize h̄ for which we can give a complete description of the stability-
instability dynamics of the solutions of (1) with a given level of confidence,
according to the statement of Theorem 3.1. We illustrate these formulae
with examples. Additionally, for any particular X0 ∈ R, we estimate the
maximum stepsize h that will give asymptotic stability of a solution of (1)
for any given X0.

In Section 7 we bring together our main results and the calculations per-
formed in Sections 5 and 6 to write down an explicit description of the dy-
namics of an Euler-Maruyama polynomial difference equation with fading,
state-independent perturbations. We show that this description is consis-
tent with the known dynamics of the corresponding Itô differential equation.
We then use numerical simulation to investigate the completeness of this
description.

Finally, in Section 8 we present the proofs of three lemmas deferred from
Section 2 for narrative reasons.

2 Mathematical Preliminaries

Let (Ω,F , {Fn}n∈N,P) be a complete, filtered probability space. All stochas-
tic perturbations in the paper will be driven by a sequence of independent
random variables {ξn}n∈N with distribution functions Ψn and with Eξn = 0,
Eξ2

n = 1. The filtration {Fn}n∈N is naturally generated by this sequence:
Fn = σ{ξi : 1 ≤ i ≤ n}, for n ∈ N. Among all sequences {Xn}n∈N of
random variables we distinguish those for which Xn is Fn-measurable for
all n ∈ N. We use the standard abbreviation “a.s.” for the wordings “al-
most sure” or “almost surely” with respect to the fixed probability measure
P throughout the text. A more detailed discussion of stochastic concepts and
notation may be found in, for example, Shiryaev [17].

2.1 Conditions on the stochastic perturbation

Everywhere in this paper we make the following assumption.
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Assumption 2.1 The sequences {σn}n∈N and {ξn}n∈N satisfy

lim
n→∞

σnξn+1 = 0, a.s. (5)

Assumption 2.1 leads to the following result.

Lemma 2.2 Let (5) hold. Then for all γ ∈ (0, 1) there exist Ωγ and j(γ)
such that

max
n∈N

|σnξn+1(ω)| < j(γ), ω ∈ Ωγ , P(Ωγ) > 1− γ. (6)

Conditions which guarantee (5) in Assumption 2.1 can be found in [1],
along with the proof of Lemma 2.2.

2.2 Stability for a general equation under deterministic
perturbation

We present here some lemmas from [1] which will be widely used in this paper,
and which address the stability of solutions of a deterministic inhomogeneous
difference equation of the form

xn+1 = xn − f(xn) + Sn, n ∈ N, x0 ∈ R, (7)

where f : R→ R, f(0) = 0 is a continuous function with the properties

uf(u) > 0, for all u 6= 0, (8)
inf
u>c

|f(u)| > 0, for all c > 0. (9)

The first lemma provides conditions on f under which certain solutions
of (7) are asymptotically stable.

Lemma 2.3 Suppose the sequence {xn}n∈N is a solution of (7), where f
obeys (8) and (9), and Sn → 0, as n →∞. Define the mapping

GB(u) = u− f(u) + B, u,B ∈ R. (10)

Suppose that there exists an interval (−a, a), and a number λ ∈ (0, 2), such
that GB : (−a, a) → (−a, a), when |B| ≤ maxn∈N |Sn|, and

|f(u)| ≤ (2− λ)|u|, u ∈ (−a, a). (11)

Then limn→∞ xn = 0 when x0 ∈ (−a, a).

The next lemma provides conditions on f outside of (−a, a) under which
oscillatory instability of solutions of (7) is observed.
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Lemma 2.4 Suppose the sequence {xn}n∈N is a solution of (7), where f
satisfies (8). Suppose also that there exist constants a, λ > 0 such that

|f(u)| ≥ (2 + λ)|u|, u ∈ (−∞,−a) ∪ (a,∞). (12)

Suppose also that |Sn| < λa
2 for all n ∈ N. Then

lim sup
n→∞

xn = ∞ and lim inf
n→∞

xn = −∞

when x0 ∈ (−∞,−a) ∪ (a,∞).

Finally, we generalise Lemma 2.4 so that it applies to deterministic difference
equations with a state-dependent perturbation.

xn+1 = xn − f(xn) + Sng(xn), n ∈ N. (13)

Lemma 2.5 Suppose the sequence {xn}n∈N is a solution of (7), where f
satisfies (8). Suppose also that there exist constants a, λ, ν1,H > 0 such that

|f(u)| ≥ (2 + λ)|u|+ H|u|ν1 , u ∈ (−∞,−a) ∪ (a,∞). (14)

Suppose also that |Sng(xn)| < H|xn|ν1 for all n ∈ N. Then

lim sup
n→∞

xn = ∞ and lim inf
n→∞

xn = −∞,

when x0 ∈ (−∞,−a) ∪ (a,∞)

The proof of Lemma 2.5 is similar to that of Lemma 2.4.

2.3 Properties of the unperturbed mapping

The deterministic mapping from R to R corresponding to an unperturbed
version of (1), is given by the function

Fh(x) = x− hβx|x|ν , x ∈ R. (15)

In this subsection we describe the properties of this function as fully as pos-
sible, before moving to to examine the effect of perturbations on its action
in Subsections 2.4 and 2.5. Since Fh(−x) = −Fh(x) and Fh(0) = 0, we may
restrict our attention to (0,∞) without loss of generality. First, we pick out
the key features of Fh:

Definition 2.6 Let Fh be the mapping from R to R defined in (15). Then

xmax : Fh(xmax) = max
x∈[0,∞)

Fh(x), [Fh]max := Fh(xmax),

and

x1 := the unique value of x ∈ (0,∞) where Fh(x) = 0,

x2 := the unique value of x ∈ (0,∞) where Fh(x) = −[Fh]max,

x3 := the unique value of x ∈ (0,∞) where Fh(x) = −x.
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The properties of the mapping Fh are contained in the following lemma.

Lemma 2.7 For the mapping Fh,

(i) x1 and x3 satisfy

x1 = ν

√
1

hβ
, x3 = ν

√
2

hβ
;

(ii) there exists a unique c(ν) ∈
(

ν
√

1 + ν, ν
√

2(1 + ν)
)

such that

x2 =
c(ν)

ν
√

h(1 + ν)β
,

and therefore x2 is unique, and x2 ∈
(
1/ ν

√
h(1 + ν),∞

)
;

(iii) x1 < x2 < x3.

The proof of Lemma 2.7 is deferred until Section 8.

Definition 2.8 By Part (ii) of Lemma 2.7 we can define q∗ ∈ (0, 1) by

q∗ =
c(ν)

ν
√

2(1 + ν)
. (16)

Note that q∗ does not depend on h.

Definition 2.9 For any q ∈ (q∗, 1), we construct the sets

IM
q =

(
−q ν

√
2

hβ
, q ν

√
2

hβ

)
, (17)

and

IL
q =

(
−∞,−(2− q) ν

√
2

hβ

)
, IR

q =
(

(2− q) ν

√
2

hβ
,∞

)
. (18)

Finally, denote
ILR
q = IL

q ∪ IR
q . (19)

2.4 Invariance of IM
q under Fh with a state-independent

perturbation

The next stage is to apply a deterministic perturbation to the mapping (15)
and construct an interval invariant under the perturbed map. First we ex-
amine a state-independent perturbation. In Subsection 2.5 we consider a
state-dependent perturbation.

For C ∈ R, define

GC,h(x) = x− hβx|x|ν +
√

hC, x ∈ R. (20)

We note that GC,h(x) = Fh(x) +
√

hC, where Fh is defined as in (15).
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Lemma 2.10 Let GC,h be the mapping from R to R defined in (20). For any
constants H > 0, β > 0 and ν > 0, there exists h̄(H, ν, β) > 0 sufficiently
small that the following is true:

For any h ∈ (0, h̄) there exists q = q(h) ∈ (q∗, 1) such that

GC,h : IM
q → IM

q (21)

holds for any C ∈ (−H, H).

Corollary 2.1 Define the mapping

GB(u) = Fh(u) + B, (22)

where |B| ≤
√

h|j(γ)|, h < h̄(γ, ν, β), and Fh is defined by (15).
Under the conditions of Lemma 2.10 we have

GB : IM
q → IM

q ,

with q = 1− ε(h), where

ε(h) = 21− 1
ν h

1
2+ 1

ν ν−1β
1
ν H. (23)

2.5 Invariance of IM
q under Fh with a state-dependent

perturbation

Now we take exactly the same approach for a state-dependent perturbation
of (15). Define for C ∈ R the mapping

G̃C,h(x) = x− hβx|x|ν +
√

h|x|ν1C, x < 0. (24)

We note that
G̃C,h(x) = Fh(x) +

√
h|x|ν1C,

where Fh is defined as in (15).

Lemma 2.11 For all H > 0, β > 0, ν > 0, and

ν1 < 1 +
ν

2
,

we can find h̄(H, ν, ν1, β) > 0 so small that for each h ∈ (0, h̄) we can define
q = q(h) ∈ (q∗, 1) such that for all C ∈ (−H, H) we have

G̃C,h : IM
q → IM

q . (25)

Corollary 2.2 Define GB as in (22), with

|B| ≤
√

hqν1

(
ν

√
2

hβ

)ν1

|j(γ)|,



Local Dynamics with Fading Noise 409

and h < h̄(γ, ν, ν1, β). Under the conditions of Lemma 2.11 we have

GB : IM
q → IM

q ,

where q = 1− ε(h), with

ε(h) = K−1
1 ν−12−

1
ν +

ν1
ν β

1
ν−

ν1
ν h

1
2+ 1

ν−
ν1
ν H. (26)

Remark 1 The proofs of Lemmas 2.10 and 2.11 require us to ensure that

ε(h) < min
{

1
2
, 1− q∗

}
, (27)

where q∗ is defined in (16) of Definition 2.8. A consequence of this is that
q = 1− ε(h) ∈ (q∗, 1).

3 Stability and instability: state-independent
noise

In this section we state and prove the central result of the paper, which
describes regions of stability and instability for solutions of (1).

Theorem 3.1 Assume that the sequences {σn}n∈N and {ξn}n∈N satisfy con-
dition (5) in Assumption 2.1. Let the sequence {Xn}n∈N be a solution of
(1).

Then, for every γ ∈ (0, 1), there exists h̄(γ, ν, β) > 0 and Ωγ ∈ Ω, with
P{Ωγ} > 1 − γ, such that for all h < h̄(γ, ν, β) and ω ∈ Ωγ there exists
ε̄(h) > 0 with

lim
h→0

ε̄(h) = 0, (28)

such that

(i) limn→∞Xn(ω) = 0, when

X0 ∈
(
− ν

√
2

hβ
+ ε̄(h), ν

√
2

hβ
− ε̄(h)

)
; (29)

(ii) lim supn→∞Xn = ∞ and lim infn→∞Xn = −∞, when

X0 ∈
(
−∞,− ν

√
2

hβ
− ε̄(h)

) ⋃ (
ν

√
2

hβ
+ ε̄(h),∞

)
. (30)

Remark 2 Notice from (28) and the form of the regions defined in (29) and
(30) that, as h decreases to zero, the region of stability expands to encompass
all of R. Thus the dynamics of solutions of (1) can be made consistent with
those of (3) by choosing h small enough. In Subsection 6.2 we show how,
given X0, values of h sufficient for stability with confidence at least 1−γ may
be computed.
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Proof We begin by relating the interval IM
q to the statement of the theorem.

For a fixed γ > 0, let Ωγ and j(γ) be defined as in Lemma 2.2, and let ε(h)
be defined as in (23) with H = j(γ). We define

ε̄(h) = ε(h) ν

√
2

hβ
(31)

and note that for fixed γ and ν,

lim
h→0

ε̄(h) = lim
h→0

{
2h

1
2 j(γ)

1
ν

}
= 0.

Fix h ≤ h̄(γ, ν, β) and set
q = 1− ε(h). (32)

By (27) in Remark 1 we have q ∈ (q∗, 1). From (31) and (32), we conclude
that

q ν

√
2

hβ
= (1− ε(h)) ν

√
2

hβ
= ν

√
2

hβ
− ε̄(h),

thus the interval
(
− ν

√
2

hβ + ε̄(h), ν

√
2

hβ − ε̄(h)
)

coincides with the interval

IM
q , as defined in (17).

Now we turn to the proof of Part (i). The function f : R 7→ R defined by

f(u) = hβu|u|ν

satisfies (8) and (9). For u ∈ IM
q we have

|f(u)| = hβ|u||u|ν ≤ hβ|u|
∣∣∣∣q ν

√
2

hβ

∣∣∣∣
ν

= 2qν |u|.

Then, for λ = 2(1− qν), condition (11) holds.
Let X0 ∈ IM

q , where q satisfies (32). Fix a path ω ∈ Ωγ and set

Sn =
√

hσnξn+1(ω), and xn = Xn(ω).

By (5) in Assumption 2.1, limn→∞ Sn = 0, and by Lemma 2.2, |Sn| =
|
√

hσnξn+1(ω)| <
√

hj(γ). Also, we find that GB , as defined in (22), maps
IM
q into itself, by Corollary 2.1. Thus we can apply Lemma 2.3 and conclude

that limn→∞ xn = 0.
To prove Part (ii), consider X0 ∈ ILR

q . For u ∈ IR
q we have

|f(u)| = hβ|u||u|ν ≥ hβ|u|
∣∣∣∣ ν

√
2

hβ
(1 + ε(h))

∣∣∣∣
ν

= 2(1 + ε(h))ν |u|.
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Define λ = 2(1 + ε(h))ν − 2 and a = ν

√
2

hβ + ε̄(h). Since for h ≤ h̄(γ, ν, β)
the second inequality in (74) holds, we have

λa

2
= ((1 + ε(h))ν − 1) ν

√
2

hβ
(ε(h) + 1)

> ν

√
2

hβ

νε(h)
2

= j(h)
√

h

≥ |
√

hσnξn+1(ω)| = |Sn|,
for all ω ∈ Ωγ . Now we can apply Lemma 2.4 and obtain the desired result.

4 Stability-instability: state-dependent noise

4.1 Statement of results

In this section we state and prove two theorems for the difference equation
with state-dependent noise (4). Following the approach described in Section 3
for the case of state-independent noise, we can define a basin of attraction
A for the zero solution of (4) with an associated confidence level 1− γ. The
region A can be manipulated to include any particular initial value X0 for a
given value of γ by choosing h appropriately small. However, the regions of
instability (B) and unknown behaviour (C) are not as clearly defined.

There are two cases, distinguished by the relative sizes of ν1 and ν.

Assumption 4.1 Assume that ν1 and ν satisfy

ν1 <
ν

2
. (33)

Assumption 4.2 Assume that ν1 and ν satisfy

ν1 < ν + 1. (34)

Theorem 4.3, addressing the stability region of (4), will be proved under
Assumption 4.1.

Theorem 4.3 Let the sequence {Xn}n∈N be a solution of (4), where we as-
sume that the sequences {σn}n∈N and {ξn}n∈N satisfy condition (5) in As-
sumption 2.1. Assume also that ν1 and ν satisfy (33) in Assumption 4.1.

For every γ ∈ (0, 1) there exists h̄(γ, ν, ν1, β) > 0 and Ωγ ∈ Ω, with
P{Ωγ} > 1 − γ, such that for all h < h̄(γ, ν, ν1, β) and ω ∈ Ωγ there exists
ε̄(h) > 0 with

lim
h→0

ε̄(h) = 0, (35)

such that limn→∞Xn(ω) = 0, when

X0 ∈
(
− ν

√
2

hβ
+ ε̄(h), ν

√
2

hβ
− ε̄(h)

)
.
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Theorem 4.4, addressing the instability region of (4), will be proved under
Assumption 4.2.

Theorem 4.4 Let the sequence {Xn}n∈N be a solution to (4), where we as-
sume that the sequences {σn}n∈N and {ξn}n∈N satisfy condition (5) in As-
sumption 2.1. Assume also that ν1 and ν satisfy (34) in Assumption 4.2.

For every γ ∈ (0, 1) there exists Ωγ ∈ Ω, with P{Ωγ} > 1 − γ, such that
for each h > 0 there exists

a = a(γ, h) > ν

√
2

hβ
,

such that for each ω ∈ Ωγ ,

X0 ∈ (−∞,−a) ∩ (a,∞)

implies lim supn→∞Xn(ω) = ∞ and lim infn→∞Xn(ω) = −∞.

Remark 3 When {ξn}n∈N is a sequence of independent standard Normal
random variables, (4) is the Euler-Maruyama discretisation, over a uniform
mesh of length h > 0, of the Itô-type stochastic differential equation

dX(t) = −β|X(t)|ν+1dt + σ(t)|X(t)|ν1dW (t), t ≥ 0,

X(0) ∈ R.
(36)

When ν1 ≥ 1, the solution (Xn)t≥0 with arbitrary initial condition X0 ∈ R,
is well defined, unique and positive on [0,∞), see [5], and most importantly,
limt→∞X(t) = 0, a.s. This can be shown by applying Itô’s formula to the
Liapunov function V (x) = xα with α ∈ (0, 1). Note that the proof does not
require that limt→∞ σ(t) = 0.

When ν1 < 1, the diffusion coefficient is not Lipschitz continuous. But if
ν1 > 1

2 we still can prove uniqueness and, therefore, existence on [0,∞), by
applying the result by Yamada-Watanabe (see, for example, [10]). However,
the asymptotic behaviour of solutions, including positivity, in the parameter
region ν1 ∈ (1/2, 1) is unknown: we can make no comparisons there.

4.2 Proof of Theorems 4.3 and 4.4

Proof of Theorem 4.3 For a fixed γ > 0, let Ωγ and j(γ) be defined as in
Lemma 2.2 and ε(h) be defined as in (26) with H = j(γ). Set

ε̄(h) = ε(h) ν

√
2

hβ

and note that, since 1/2− ν1/ν > 0, for fixed γ, ν, ν1 and β

lim
h→0

ε̄(h) = lim
h→0

{
h

1
2−

ν1
ν j(γ)β−

ν1
ν 2

ν1
ν K−1

1 ν−1
}

= 0.
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Choose h̄ = h̄(j(γ), ν, ν1, β) as described in Lemma 2.11 and fix h ≤ h̄. As
before, set q = 1− ε(h). By (27) in Remark 1 we have q ∈ (q∗, 1).

From definitions of ε̄ and q, we conclude that q ν

√
2

hβ = ν

√
2

hβ − ε̄(h), and
thus

IM
q =

(
− ν

√
2

hβ
+ ε̄(h), ν

√
2

hβ
− ε̄(h)

)
.

The function f(u) = hβu|u|ν satisfies (8) and (9). Also, when u ∈ IM
q , f

satisfies condition (11) with λ = 2(1− qν) ∈ (0, 2).
Let X0 ∈ IM

q . Fix ω ∈ Ωγ , set xn = Xn(ω) and set

Sn =
√

h|Xn(ω)|ν1σnξn+1(ω).

Since |Xn(ω)|ν1 ≤
(
q ν

√
2

hβ

)ν1

when ω ∈ Ωγ , limn→∞ Sn = 0 by (5) in As-

sumption 2.1. Also, by Corollary (2.2), we obtain that GB : IM
q → IM

q ,
where GB is defined as in (22). Thus we can apply Lemma 2.3 and conclude
that limn→∞ xn = 0.

Proof of Theorem 4.4 For a fixed γ > 0, let Ωγ and j(γ) be defined as in
Lemma 2.2. Fix some ε > 0. Let

δ = δ(ε) ∈
(

0, 1− 1
(1 + ε)ν

)
.

For arbitrary h > 0 and for |u| ≥ ν

√
2

hβ (1 + ε) we have

|f(u)| = hβ|u||u|ν = hβ(1− δ)|u|1+ν + hβδ|u|1+ν

≥ hβ(1− δ)|u|
∣∣∣∣ ν

√
2

hβ
(1 + ε)

∣∣∣∣
ν

+ hβδ|u|1+ν

= 2(1 + ε)ν(1− δ)|u|+ hβδ|u|1+ν .

Set

a = a(γ, ε, h, ν, ν1, β) = max

{
ν

√
2

hβ
(1 + ε),

(
j(γ)

βδ
√

h

) 1
1+ν−ν1

}
, (37)

and
Sn(ω) =

√
hσnξn+1, g(xn) = |xn|ν1 , H =

√
hj(γ).

Then |Sn(ω)| ≤ H on Ωγ . When |u| ≥
(

j(γ)

βδ
√

h

) 1
1+ν−ν1 we have

hβδ|u|1+ν >
√

hj(γ)|u|ν1 .

Thus, on the set (−∞,−a)∩ (a,∞), the function f satisfies condition (14) in
Lemma 2.5, with λ = 2(1+ε(h))ν(1−δ)−2 and H =

√
hj(γ). The statement

of the theorem follows.
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Remark 4 In order to understand which term on the right-hand-side of (37)
dominates, we must calculate j(γ) for specific distributions and for appropri-
ate values of γ; see Section 5.

5 Estimating the bound j(γ) on the diffusion.

In this section we compute values of j(γ) such that

P{|σnξn+1| < j(γ), n ∈ N} > 1− γ, (38)

holds for various perturbation classes, setting γ = 0.1, 0.05, 0.01. For each
perturbation class, we must choose the form of the sequence {σn}n∈N so that
it satisfies (5) in Assumption 2.1.

5.1 First example: Normal perturbations

Let {ξn}n∈N be a sequence of independent random variables, each with an
N (0, 1) distribution function. In order to compute values of j(γ) such that

P [|σnξn+1| < j(γ), n ∈ N] > 1− γ,

we require the following set of tight bounds on the Normal distribution func-
tion, (found in Sasvari & Chen [16]): for all u ∈ R,

√
1− e−

u2
2 <

1√
2π

∫ u

−u

e−
x2
2 dx <

√
1− e−

2u2
π . (39)

Remark 5 It was proved in [1] that when the distribution of each ξn is stan-
dard Normal, (5) holds if and only if

lim
n→∞

σ2
n lnn = 0. (40)

In fact the result in [1] was more general than this: it stated that (40)
is necessary and sufficient to guarantee limn→∞ σnξn+1 = 0 a.s. when the
distribution Ψn ≡ Ψ of each ξn behaves asymptotically as follows:

1−Ψ(a) + Ψ(−a) ∼ b

a
e−

1
k a2

, k > 0, a, b ∈ R

The distribution of a standard Normal random variable is included in this
case, as may be seen from Mills’ estimate (see, for example [10]):

a

1 + a2
e−a2/2 ≤

∫ ∞

a

e−u2/2du ≤ 1
a
e−a2/2, a ∈ R.
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Example 5.1 We define {σn}n∈N as the monotone decreasing sequence

σn =
1

[ln(n + 1)]1.1 , n ∈ N,

ensuring that (40) is satisfied. Thus, for n ∈ N,

σn ≤ σ1 =
1

[ln 2]1.1 = 1.4966 < 1.5. (41)

Since {ξn}n∈N is a sequence of independent random variables, and applying
the lower bound in (39), we see that

P[|σnξn+1| > j(γ), n ∈ N] = P
[
|ξn+1| > j(γ)

σn
, n ∈ N

]

= P

[ ∞⋂
n=0

{
|ξn+1| > j(γ)

σn

}]

≤ P
[
|ξN | > j(γ)

σ1

]

≤ 1−
√

1− e
− 1

2

“
j(γ)
σ1

”2

,

for any particular N ∈ N. Applying the upper bound on σ1 from (41), and
rearranging, we find that we must choose j(γ) so that

j(γ) >
√
−3 ln [1− (1− γ)2]. (42)

Note that 1−(1−γ)2 ∈ (0, 1), and therefore the inequality (42) is well defined.

• If γ = 0.1, then j(0.1) > 4.99 suffices for (42) to hold, and

P [|σnξn+1| < 5, n ∈ N] > 0.9.

• If γ = 0.05, then j(0.05) > 6.99 suffices for (42) to hold, and

P [|σnξn+1| < 7, n ∈ N] > 0.95.

• If γ = 0.01, then j(0.01) > 11.76 suffices for (42) to hold, and

P [|σnξn+1| < 11.77, n ∈ N] > 0.99.

5.2 Second example: a distribution with polynomial
tails

Let {ξn}n∈N be a sequence of independent, identically distributed random
variables. Suppose there exists a∗ > 0 such that the distribution Ψ of each
ξn satisfies, for some m > 2,

P{|ξn| > a} = 1−Ψ(a) + Ψ(−a) = a−m, a > a∗. (43)
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Suppose also that there exists c < ∞ such that

lim
a→∞

(1−Ψ(a))am = c. (44)

Remark 6 m > 2 ensures that each ξn has a finite second moment. Note
also that in this demonstration we require that (43) hold precisely for a > a∗,
and that a∗ be sufficiently small not to affect our computations. In prac-
tice, the relationship would generally be asymptotic, and the computations
described in this example are thus approximate.

Remark 7 It was proved in [1] that, under constraint (44), condition (5)
holds if and only if

‖σ‖m =
∞∑

i=1

|σi|m < ∞. (45)

Example 5.2 Set m = 3, a∗ = 2, and define {σn}n∈N to be the monotone
decreasing sequence

σn = n−
1
2 , n ∈ N,

which satisfies (45). Now we fix j(γ) > a∗maxi∈N σi = 2, and estimate

P{|σnξn+1| ≥ j(γ), n ∈ N} = P
{
|ξn+1| ≥ j(γ)

σn
, n ∈ N

}

≤ P

[ ∞⋃

i=1

{
|ξi+1| ≥ j(γ)

σi

}]

≤
∞∑

i=1

P
{
|ξi+1| ≥ j(γ)

σi

}

=
∞∑

i=1

(
j(γ)
σi

)−3

.

Then

P {|σnξn+1| < j(γ), n ∈ N} ≥ 1−
∞∑

i=1

(
j(γ)
σi

)−3

. (46)

Therefore it suffices to choose j(γ) > 2 to satisfy

j(γ)−3
∞∑

i=1

σm
i < γ, (47)

which, since ‖σ‖3 < ∞, may be rewritten

j(γ) >

[‖σ‖3
γ

] 1
3

. (48)
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It remains to calculate

‖σ‖3 =
∞∑

i=1

σ3
i =

∞∑

i=1

i−
3
2 = 1 +

∞∑

i=2

i−
3
2 ≤ 1 +

∫ ∞

1

x−
3
2 dx

= 1 +
x1−3/2

1− 3/2

∣∣∣∣
∞

1

= 3.

• If γ = 0.1 then j(0.1) > 3.107 suffices for (48) to hold, and

P [|σnξn+1| < 3.108, n ∈ N] > 0.9.

• If γ = 0.05 then j(0.05) > 3.914 suffices for (48) to hold, and

P [|σnξn+1| < 3.915, n ∈ N] > 0.95.

• If γ = 0.01 then j(0.01) > 6.694 suffices for (48) to hold, and

P [|σnξn+1| < 6.695, n ∈ N] > 0.99.

6 Computing sufficient bounds on the stepsize
parameter h

Recall the definition of h̄ from the statement of Theorem 3.1. In this section
we find implicit formulae for h̄, and illustrate them with the examples from
Section 5. Additionally, for any particular X0 ∈ R, we estimate an upper
bound on the stepsize h in equation (1) that will place X0 in the region of
convergence A.

6.1 Estimation of h̄

Taking into consideration the proof of Lemma 2.10, h̄ must be sufficiently
small that ε(h), defined in (23) by

ε(h) = 21− 1
ν h

1
2+ 1

ν ν−1β
1
ν j(γ),

satisfies (27) in Remark 1, and the following inequalities:

νε(h)
2

< 1− (1− ε(h))ν , (49)

νε(h)
2

< (1 + ε(h))ν − 1. (50)

We start by assuming that ε(h) < 1
2 . To keep the calculations simple we will

restrict our examination to the case where ν > 1. The case where ν < 1 is
similar.
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We begin by determining when (49) holds. By examining a truncated
series expansion of (1 − ε)ν we see that for ε(h) = ε ∈ (0, 1/2) there exists
θ ∈ (0, ε) such that

(1− ε)ν = 1− νε +
ν(ν − 1)(1− θ)ν−2

2
ε2, (51)

where 1− θ ∈ (1/2, 1) and
{

1 > (1− θ)2−ν >
(

1
2

)2−ν
, if ν < 2;

1 < (1− θ)2−ν <
(

1
2

)2−ν
, otherwise.

(52)

From (51) we see that (49) holds if

ν(ν − 1)(1− θ)ν−2

2
ε2 <

νε

2
,

which will be the case if

ε = ε(h) <
(1− θ)2−ν

ν − 1
. (53)

Similarly, to determine when (50) holds, we see that for ε ∈ (
0, 1

2

)
, there

exists θ ∈ (0, ε) such that

(1 + ε)ν = 1 + νε +
ν(ν − 1)(1 + θ)ν−2

2
ε2, (54)

where 1 < 1 + θ < 3/2 and
{

1 < (1 + θ)2−ν <
(

3
2

)2−ν
, if ν < 2;

1 > (1 + θ)2−ν >
(

3
2

)2−ν
, otherwise.

(55)

From (54) we see that (50) holds if

ν(ν − 1)(1 + θ)ν−2

2
ε2 <

νε

2
,

which will be the case if

ε = ε(h) <
(1 + θ)2−ν

ν − 1
. (56)

Estimates (53) and (56) imply that

ε(h) <
min{(1 + θ)2−ν , (1− θ)2−ν}

ν − 1
. (57)

Let

G(ν) :=

{
1

ν−1

(
1
2

)2−ν
, if ν < 2;

1
ν−1

(
3
2

)2−ν
, otherwise.

(58)



Local Dynamics with Fading Noise 419

In light of (52) and (55), the estimates (49) and (50) hold when ε(h) < G(ν),
defined by (58). We note that G(2) = 1.

Taking (27) into consideration, we now see that h must be sufficiently
small that

21− 1
ν h

1
2+ 1

ν ν−1β
1
ν j(γ) < min

{
1
2
, 1− q∗, G(ν)

}
,

or, alternatively,

h < h̄ =

(
ν min

{
1
2 , 1− q∗, G(ν)

}

21− 1
ν β

1
ν j(γ)

) 2ν
2+ν

. (59)

The following example illustrates the use of this formula.

Example 6.1 Consider equation

Xn+1 = Xn − hX3
n +

√
hσnξn+1, n = 1, 2 . . . . (60)

Here, β = 1, ν = 2. First we find q∗ by following the argument in the proof
of Lemma 2.7, which is contained in Section 8. Thus we must solve equation
(69), which in this example takes the form

c3 − 3c− 2 = 0.

This equation has 3 solutions, c1,2 = −1 and c3 = 2. Since we are interested
only in the positive root, we use c3 = 2 in our calculations:

q∗ =
c(ν)

ν
√

2(1 + ν)
=

c(ν)
ν
√

2× 3
=

2√
6

= 0.81. (61)

Since G(2) = 1 we have

min
{

1
2
, 1− q∗, G(ν)

}
= min{0.5, 0.19, 1} = 0.19.

Thus, from (59) we obtain

h̄ =
2× 0.19
2

1
2 j(γ)

=
0.269
j(γ)

.

Now we use results from the examples given in Section 5 to fill in the value
of j(γ). Fix γ = 0.05 and consider the two classes of perturbation given in
Examples 5.1 and 5.2. Example 5.1 indicates that for Normal perturbations
we can take j(0.05) = 7 while Example 5.2 indicates that for perturbations
with polynomial tails we can take j(0.05) = 3.915. Thus

h̄(Normal) =
0.269

7
≈ 0.0384, h̄(Polynomial) =

0.269
3.915

≈ 0.0687.
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6.2 Computing h sufficient for stability with confidence
1− γ when the initial value X0 is given

Fix X0 ∈ R. We want to find h such that X0 ∈ A, where A is the region of
convergence for solutions of (1). For simplicity we examine only initial values
satisfying

|X0| ≤ ν

√
2

hβ
,

where h < h̄ as defined in (59), to guarantee the conditions of Theorem 3.1.
Thus we obtain the following estimation for h:

h < min





2
βXν

0

,

(
ν min

{
1
2 , 1− q∗, G(ν)

}

21− 1
ν β

1
ν j(γ)

) 2ν
2+ν



 . (62)

Since we have already computed values for the second term on the right hand
side of (62) for two perturbation classes, it remains to compute values for
the first term, and compare.

Example 6.2 Consider again equation (60) from Example 6.1. For X0 =
1.9 we have

2
βXν

0

=
2

1.92
= 0.055,

for X0 = 20 we have
2

βXν
0

=
2

202
= 0.005,

while for X0 = 100 we have

2
βXν

0

=
2

1002
= 0.0002.

In the case where the perturbations are Normal, h̄(Normal) ≈ 0.0384 will ad-
equately simulate the X0 = 1.9 solution at a 95% confidence level, but for
X0 = 20 or X0 = 100, the stepsize h must be decreased accordingly. In the
case where the perturbation has polynomial tails, h̄(Polynomial) ≈ 0.0684 will
not adequately simulate the solution at a 95% confidence level for any of these
initial values; the stepsize h must be decreased.

7 Example: the dynamics of an Euler-Maruyama
difference equation with slowly vanishing noise

7.1 Theoretical description of dynamics

Consider the Itô equation

dX(t) = X3(t) +
1

[log(t + 1)]1.1 dW (t), t > 0, (63)
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where W is a standard Brownian motion. All solutions of (63) are a.s. asymp-
totically stable, by Chan & Williams [8]. A 95%-level description of the
stability dynamics of the Euler-Maruyama discretisation

Xn+1 = Xn − hX3
n +

√
h

1
[log(n + 1)]1.1 ξn+1, n ∈ N, (64)

where {ξn}n∈N is a sequence of independent standard Normal random vari-
ables, is an easy corollary of Theorem 3.1.

Corollary 7.1 Let the sequence {Xn}n∈N be a solution of (64). Then, for
all h < 0.0384,

1. P [limn→∞Xn = 0] > 0.95 when

X0 ∈
(
−

√
2
h

+ 7
√

h,

√
2
h
− 7

√
h

)
,

2. P [lim supn→∞Xn = ∞ & lim infn→∞Xn = −∞] > 0.95, when

X0 ∈
(
−∞, −

√
2
h
− 7

√
h

)⋃ (√
2
h

+ 7
√

h, ∞
)

.

Proof The explicit formulae in (23) and (31) give ε̄(h) = 7
√

h, and recall
from Example 6.1 that h̄(Normal) = 0.0357 when γ = 0.05. The statement of
the corollary then follows from that of Theorem 3.1.

7.2 Numerical investigation of dynamics

It is reasonable to use numerical simulation to determine how fully Corollary
7.1 represents the stability-instability dynamics of solutions of (64). That is
the purpose of this subsection. For all simulations that follow, real numbers
are rationally approximated with 64-bit floating-point numbers satisfying the
IEEE-754 standard, and the sequence of Gaussian numbers {ξn}n∈N has been
approximated with a sequence of pseudo-random Gaussian numbers gener-
ated with the nextGaussian() method of the java.util.Random() class.
This method implements the polar form of the Box-Muller-Marsaglia trans-
formation to generate independent pairs of Normally distributed pseudo-
random numbers from independent pairs of pseudo-random numbers uni-
formly distributed over the interval [0, 1]. A full description can be found,
for example, in Section 3.4.1, Subsection C of Knuth [12].

7.2.1 An algorithm for approximating the probability of stability
of solutions of (64)

The following procedure will be applied across a range of initial values of
(64):
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 0.15

 10000 8000 6000 4000 2000 0

(a) (b)

Figure 1: (a): simulated (ε = 0.01) probabilities of stability of solu-
tions of (64), across initial values uniformly spaced 0.01 apart on the
interval [7, 9]. h = 0.03 and

√
2/h = 8.165. (b): a simulation of{√

h
(
1/[log(n + 1)]1.1

)
ξn+1

}100,000

n=1
with h = 0.03.

1. Choose an initial value X0;

2. Initialise a counter numStabPaths to zero;

3. Simulate a path of length N = 1000;

4. If |X999| < ε, for some ε > 0, then increment numStabPaths. Other-
wise, do nothing;

5. Repeat 500 times with independent sets of Gaussian random numbers;

6. The quantity numStabPaths/500 represents the simulated probability
of stability of the solution of (64) corresponding to X0.

The choice of ε is important. In Figure 1, Part (a), we see that, when
ε = 0.01, the simulated probabilities of stability are inconsistent with the
statement of Corollary 7.1: they are close to zero everywhere. In Figure 1,
Part (b), we see why: the magnitude of state-independent stochastic pertur-
bation has frequent deviations above 0.01 over an interval 100 times longer
than the interval of simulation. Although {σnξn+1}n∈N obeys (5) and there-
fore converges asymptotically to zero with probability one, it does so very
slowly when σn = 1/[log(n + 1)]1.1, n ∈ N. Since a finite state machine must
classify the asymptotic stability of paths by observing each one over a finite
time-set, setting the value of ε too low will yield false negatives: stable paths
will be mistaken for unstable paths.

The solution is to raise the value of ε. In fact we can choose ε to be very
large, without incurring false positives, since solutions of the unperturbed
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difference equation

xn+1 = xn − hx3
n, n ∈ N, x0 >

√
2
h

,

grow in magnitude so quickly that their values exceed the overflow bounds
of 64-bit floating point number within a few timesteps. Therefore, unstable
paths are unlikely to be mistaken for stable paths. A more detailed numerical
investigation of this phenomenon, for polynomial difference equations with
state-dependent perturbations, was presented in Kelly & Morgan [11]. To
generate all following simulations (illustrated in Figures 2 and 3), we set
ε = 1.79769313486231570 × 10308. This is the largest rational number that
can be represented in a 64-bit floating point format satisfying the IEEE-754
standard.

7.2.2 The admissible range of values of h

The statement of Corollary 7.1 holds for all h < h̄ = 0.0384, but gives no
indication whether or not larger values of h will provide useful numerical
results. We can investigate this directly. Consider Figure 2. Parts (a)-(d)
show simulated probabilities of stability for solutions of (64) for increasing
values of h. In part (a), h = 0.03 < 0.0384, and the simulated probabilities of
stability are consistent with the statement of Corollary 7.1. However, we see
that the simulated probability of stability in the region of stability remains
above 0.95 when h . 0.375. This indicates that h̄ is conservatively low.

7.2.3 The significance of the ‘blind spot’

h [f̃h, l̃h] [fh, lh]
0.02 [9.93, 10.07] [9.01, 10.99]
0.01 [14.1, 14.2] [13.442, 14.842]

Table 1: Comparative values of f̃h, l̃h, fh, lh, when h < 0.0384 = h̄.

The four cases illustrated in Figure 2 indicate that, in our simulations,
the transition from stability with high probability to stability with low prob-
ability occurs smoothly over an interval roughly centred on

√
2/h. For fixed

h, we denote the simulated interval of transition [f̃h, l̃h], where

f̃h := min{X0 : the simulated probability of stability is less than 0.95},
l̃h := min{X0 : the simulated probability of stability is less than 0.05}.

Corollary 7.1 has nothing to say about the asymptotic stability of solu-
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Figure 2: Simulated (ε = 1.79769313486231570× 10308) probabilities of sta-
bility of solutions of (64) across initial values uniformly spaced 0.01 apart
on an interval [a, b]. In (a), [a, b] = [7, 9], h = 0.03,

√
2/h = 8.165. In (b),

[a, b] = [0, 4], h = 0.3,
√

2/h = 2.582. In (c), [a, b] = [0, 4], h = 0.375,√
2/h = 2.309. In (d), [a, b] = [0, 4], h = 0.45,

√
2/h = 2.108.

tions of (64) when

X0 ∈ [fh, lh] :=

[√
2
h
± 7

√
h

]
, (65)

and it is reasonable to investigate the relationship between this ‘blind spot’
and the simulated intervals of transition.

In Table 1, we compare [f̃h, l̃h] with the corresponding [fh, lh] for two val-
ues of h < h̄. We see that, in each case, the ‘blind spot’ [fh, lh] is larger than
the simulated interval of transition [f̃h, l̃h]. The corresponding simulations
are illustrated in Figure 3

7.2.4 Lessons drawn from numerical simulation

With a carefully designed algorithm for simulating the probabilities of stabil-
ity of solutions of (64), we see that, although our simulations are consistent
with the predictions of Corollary 7.1, the statement of the corollary appears
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 1
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 0.5

 0.05
 0

 10.25 10.07 10 9.93 9.75

 1
 0.95

 0.5

 0.05
 0

 14.4 14.2 14.142 14.1 13.9

(a) (b)

Figure 3: Simulated (ε = 1.79769313486231570× 10308) probabilities of sta-
bility of solutions of (64) across initial values uniformly spaced 0.01 apart
on an interval [a, b]. In (a), [a, b] = [9.75, 10.25], h = 0.02,

√
2/h = 10,

[f̃h, l̃h] = [9.93, 10.07]. In (b), [a, b] = [13.9, 14.4], h = 0.01,
√

2/h = 14.142,
[f̃h, l̃h] = [14.1, 14.2]

to be incomplete in two ways. First, the upper limit h̄ on the stepsize h is too
small. Second, the corollary ignores regions of the initial value set in which
solutions display stability or instability with simulated probabilities greater
than 0.95.

8 Proofs of Lemmas 2.7, 2.10 and 2.11

Proof of Lemma 2.7 We address each part in turn.

(a) Since [Fh]′(x) = 1− h(1 + ν)βxν , we have

xmax =
1

ν
√

h(1 + ν)β
, [Fh]max =

1
ν
√

h(1 + ν)β
ν

1 + ν
.

Note that the function Fh is strictly decreasing on
[
1/ ν

√
h(1 + ν)β,∞

)
.

(b) Let x1 be a point of the intersection of y = Fh(x) with OX:

Fh(x) = x− hβx1+ν = 0, x1 =
1

ν
√

hβ
.

(c) Let x3 be a point of the intersection of y = Fh(x) with y = −x:

Fh(x) = x− hβx1+ν = −x, x3 = ν

√
2

hβ
.

(d) To find a point x2 ∈
(

1
ν
√

h(1+ν)
,∞

)
such that Fh(x2) = −[Fh]max, we
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need to solve the equation

Fh(x2) = − 1
ν
√

h(1 + ν)β
ν

1 + ν
. (66)

Since
[Fh]max =

1
ν
√

h(1 + ν)β
ν

1 + ν
< xmax =

1
ν
√

h(1 + ν)β
,

point x2 lies between x1 and x3, i.e.

x1 < x2 < x3. (67)

In order to solve equation (66), we represent point x2 in the form

x2 =
c(ν)

ν
√

h(1 + ν)β

and show that it is possible to find c = c(ν), which does not depend on h,
such that

Fh

(
c(ν)

ν
√

h(1 + ν)β

)
= − 1

ν
√

h(1 + ν)β
ν

1 + ν
.

In other words we need to solve the equation

c
ν
√

h(1 + ν)β

(
1− cν

1 + ν

)
= − 1

ν
√

h(1 + ν)β
ν

1 + ν
. (68)

After multiplying (68) by ν
√

h(1 + ν)β we obtain for c = c(ν),

cν+1 − (1 + ν)c− ν = 0. (69)

Note that the solution, c = c(ν), does not depend on h, but only on ν.
Substituting the values of x1, x2 and x3 into (67), we arrive at

1
ν
√

hβ
<

c(ν)
ν
√

h(1 + ν)β
<

ν
√

2
ν
√

hβ
,

which is equivalent to

ν
√

1 + ν < c(ν) < ν
√

2(1 + ν). (70)

To show that equation (66) has the root c(ν) which satisfies inequality (70),
we consider the function

χ(c) = cν+1 − (1 + ν)c− ν,

and note that χ( ν
√

1 + ν) < 0 and χ( ν
√

2(1 + ν)) > 0.
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Since the function y = χ(x) increases for x > 1, the equation χ(c) = 0
has only one positive root

c(ν) ∈
(

ν
√

1 + ν, ν
√

2(1 + ν)
)

.

Then

x2

x3
=

c(ν)
ν
√

h(1+ν)β

ν

√
2

hβ

=
c(ν)

ν
√

2(1 + ν)
< 1.

Proof of Lemma 2.10 If q ∈ (q∗, 1), then

q ν

√
2

hβ
∈

(
c(ν)

ν
√

h(1 + ν)β
, ν

√
2

hβ

)
= (x2, x3).

Since F decreases on (x2,∞) and is symmetric with respect to OY , we have:

max
x∈IM

q

F (x) = −F

(
q ν

√
2

hβ

)
= −q ν

√
2

hβ
+ hβ

(
q ν

√
2

hβ

)1+ν

= q(2qν − 1) ν

√
2

hβ
.

Also,

min
x∈IM

q

F (x) = F

(
q ν

√
2

hβ

)
= q ν

√
2

hβ
− hβ

(
q ν

√
2

hβ

)1+ν

= −q(2qν − 1) ν

√
2

hβ
.

Now we find the bounds for C which ensure that (21) holds true. In order
for (21) to be fulfilled for all x ∈ IM

q , we need to have

x− hβx1+ν +
√

hC ≤ q ν

√
2

hβ
and x− hβx1+ν −

√
hC ≥ −q ν

√
2

hβ
.

We estimate

x− hβx1+ν +
√

hC ≤ q(2qν − 1) ν

√
2

hβ
+
√

h|C| ≤ q ν

√
2

hβ
, (71)

and

x− hβx1+ν −
√

hC ≥ −q(2qν − 1) ν

√
2

hβ
−
√

h|C| ≥ −q ν

√
2

hβ
. (72)

Both inequalities (71) and (72) hold if |C| satisfies

√
h|C| ≤ 2q ν

√
2

hβ
(1− qν). (73)
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Fix H > 0 and let ε(h) be as defined in (23). We find h̄(γ, ν, β) such that
(27) in Remark 1 holds, and so that for all h ≤ h̄(γ, ν, β)

1− (1− ε(h))ν >
νε(h)

2
and (1 + ε(h))ν − 1 >

νε(h)
2

. (74)

We note that (27) implies that, for all h ≤ h̄(γ, ν, β),

ε(h)− ε2(h) ≥ ε(h)
2

.

Then for all h ≤ h̄(γ, ν, β) we have

2q(1− qν) ν

√
2

hβ
= 2(1− ε(h)) (1− (1− ε(h))ν) ν

√
2

hβ

≥ 2(1− ε(h))
νε(h)

2
ν

√
2

hβ

≥ νε(h)
2

ν

√
2

hβ

= ν2−1+1/νβ−1/νh−1/ν21− 1
ν h

1
2+ 1

ν ν−1β
1
ν H

=
√

hH, (75)

which implies (73), and the statement of the lemma.

Proof of Lemma 2.11 Let F be defined in (15) and q is some number
from (q∗, 1). From Lemma 2.10 we have:

max
x∈IM

q

F (x) = q(2qν − 1) ν

√
2

hβ
, min

x∈IM
q

F (x) = −q(2qν − 1) ν

√
2

hβ
.

Condition (25) is fulfilled if for all x ∈ IM
q ,

x− hβx1+ν +
√

hxν1 |C|

≤ q(2qν − 1) ν

√
2

hβ
+
√

hqν1

(
ν

√
2

hβ

)ν1

|C| ≤ q ν

√
2

hβ
,

and

x− hβx1+ν −
√

hxν1 |C|

≥ −q(2qν − 1) ν

√
2

hβ
−
√

hqν1

(
ν

√
2

hβ

)ν1

|C| ≥ −q ν

√
2

hβ
.

Both inequalities hold when

√
hqν1

(
ν

√
2

hβ

)ν1

|C| ≤ q ν

√
2

hβ
− q(2qν − 1) ν

√
2

hβ
= 2q ν

√
2

βh
(1− qν).
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Thus (25) is fulfilled when

√
h|C| ≤

(
ν

√
2

hβ

)1−ν1

2q1−ν1(1− qν). (76)

Now we define K1 = min{1, 21−ν1} and define ε(h) as in (26), for fixed H.
Since 1

2 + 1
ν − ν1

ν > 0, for any fixed ν, ν1, H and β,

lim
h→0

ε(h) = 0.

Therefore we can find h̄(γ, ν, ν1, β) such that for all h ≤ h̄(γ, ν, ν1, β)

1− (1− ε(h))ν >
νε(h)

2
,

and such that (27) in Remark 1 holds. (27) implies that 1
2 < 1 − ε(h) < 1

for all h ≤ h̄(γ, ν, ν1, β), which in turn implies that

(1− ε(h))ν1−1 > K1 = min{1, 21−ν1}.
We define q = q(h) = 1− ε(h). Then for all h ≤ h̄(γ, ν, ν1, β) we have

2q1−ν1(1− qν)
(

2
hβ

) 1−ν1
ν

= 2(1− ε(h))1−ν1(1− (1− ε(h))ν)
(

2
hβ

) 1−ν1
ν

≥ 2K1
νε(h)

2

(
2

hβ

) 1−ν1
ν

= K1ν2
1
ν−

ν1
ν β−

1
ν +

ν1
ν h−

1
ν +

ν1
ν ε(h)

= H
√

h,

which implies (76) and completes the proof.
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