Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

On the local dynamics of polynomial difference equations with fading stochastic perturbations

Appleby, John A.D. and Kelly, C. and Mao, Xuerong and Rodkina, A. (2010) On the local dynamics of polynomial difference equations with fading stochastic perturbations. Dynamics of Continuous Discrete and Impulsive Systems Series A: Mathematical Analysis, 17. pp. 401-430. ISSN 1201-3390

[img]
Preview
PDF
199_AP_CK_AR_XM.pdf - Preprint

Download (426kB) | Preview

Abstract

We examine the stability-instability behaviour of a polynomial difference equa- tion with state-independent, asymptotically fading stochastic perturbations. We find that the set of initial values can be partitioned into a stability region, an instability region, and a region of unknown dynamics that is in some sense \small". In the ¯rst two cases, the dynamic holds with probability at least 1 ¡ °, a value corresponding to the statistical notion of a confidence level. Aspects of an equation with state-dependent perturbations are also treated. When the perturbations are Gaussian, the difference equation is the Euler-Maruyama dis- cretisation of an It^o-type stochastic differential equation with solutions displaying global a.s. asymptotic stability. The behaviour of any particular solution of the difference equation can be made consistent with the corresponding solution of the differential equation, with probability 1 ¡ °, by choosing the stepsize parameter sufficiently small. We present examples illustrating the relationship between h, ° and the size of the stability region.