Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

On the almost sure running maxima of solutions of affine stochastic functional differential equations

Appleby, John A.D. and Mao, Xuerong and Wu, H. (2010) On the almost sure running maxima of solutions of affine stochastic functional differential equations. SIAM Journal on Mathematical Analysis, 42 (2). pp. 646-678. ISSN 0036-1410

[img]
Preview
PDF
198_SIAMJMA000646.pdf
Final Published Version

Download (335kB) | Preview

Abstract

This paper studies the large fluctuations of solutions of scalar and finite-dimensional affine stochastic functional differential equations with finite memory as well as related nonlinear equations. We find conditions under which the exact almost sure growth rate of the running maximum of each component of the system can be determined, both for affine and nonlinear equations. The proofs exploit the fact that an exponentially decaying fundamental solution of the underlying deterministic equation is sufficient to ensure that the solution of the affine equation converges to a stationary Gaussian process.