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Abstract

This is a continuation of the first author’s earlier paper [17] jointly with Pang
and Deng, in which the authors established some sufficient conditions under which
the Euler–Maruyama (EM) method can reproduce the almost sure exponential sta-
bility of the test hybrid SDEs. The key condition imposed in [17] is the global
Lipschitz condition. However, we will show in this paper that without this global
Lipschitz condition the EM method may not preserve the almost sure exponential
stability. We will then show that the backward EM method can capture almost sure
exponential stability for a certain class of highly nonlinear hybrid SDEs.

Key words: Brownian motion, backward Euler-Maruyama, Markov chain, almost
sure exponential stability.

1 Introduction

This is a continuation of the first author’s earlier paper [17] jointly with Pang and Deng.
It is concerned with the long time dynamics of numerical simulations of hybrid stochastic
differential equations (SDEs). The research in this direction is motivated by the question
“for what choices of step size does a numerical method reproduce the characteristics of a
test SDE?” One of the important characteristics of the test SDE is the stability. Indeed,
the stability analysis of numerical methods for SDEs has recently received a great deal
of attention (see e.g. [5, 7, 8, 10, 18, 19]). More recently, the authors in [17] established
some sufficient conditions under which the Euler–Maruyama (EM) method can reproduce
the almost sure exponential stability of the test hybrid SDEs. The key condition imposed
in [17] is the global Lipschitz condition. However, there are many hybrid SDEs which do

∗Corresponding author. E-mail: x.mao@strath.ac.uk

1



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

not obey the global Lipschitz condition but are almost surely exponentially stable. For
example, consider the scalar hybrid cubic SDE

dx(t) = [α(r(t))x(t)− x3(t)]dt+ β(r(t))x(t)dB(t), (1.1)

where B(t) is a scalar Brownian motion, r(t) is a Markov chain and the parameters α(·)
and β(·) will be specified in Section 3. We will show that this SDE is almost surely
exponentially stable. Further such examples can be found in [16].

Two questions arise:

• Can the EM method preserve the almost sure exponential stability without the
global Lipschitz condition?

• If not, what other numerical method can preserve the almost sure exponential sta-
bility?

The answer to the first question is not positive. In fact we shall show in Section 3 that the
EM method CANNOT reproduce the stability characteristic of the SDE (1.1). Our aim
in this paper is to seek a positive answer to the second question. We look for conditions
under which positive results of the backward Euler–Maruyama (BEM) method can be
derived in the small step size setting. Our work therefore builds on the well known and
highly informative analysis for deterministic problems and its more recent extension to
SDEs [2, 3, 4, 5, 7, 9, 10, 11, 18, 19].

2 Notation

Throughout this paper, we let (Ω,F , {Ft}t≥0,P) be a complete probability space with a
filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is increasing and right continuous
while F0 contains all P-null sets) and we let B(t) be a scalar Brownian motion defined on
the probability space.

We let r(t), t ≥ 0, be a right-continuous Markov chain on the probability space
taking values in a finite state space S = {1, 2, . . . , N} and independent of the Brownian
motion B(·), where N is a positive integer. The corresponding generator is denoted by
Γ = (γij)N×N , so that

P{r(t+ δ) = j | r(t) = i} =

{
γijδ + o(δ) if i 6= j,

1 + γijδ + o(δ) if i = j,

where δ > 0. Here γij is the transition rate from i to j and γij > 0 if i 6= j while
γii = −∑j 6=i γij. We note that almost every sample path of r(·) is a right continuous step
function with a finite number of sample jumps in any finite subinterval of R+ := [0,∞)
(see e.g. [1]). As a standing hypothesis, we assume moreover in this paper that the
Markov chain is irreducible. This is equivalent to the condition that for any i, j ∈ S, we
can find i1, i2, . . . , ik ∈ S such that

γi,i1γi1,i2 · · · γik,j > 0.
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Note that Γ always has an eigenvalue 0. The algebraic interpretation of irreducibility is
that rank(Γ) = N − 1. Under this condition, the Markov chain has a unique stationary
(probability) distribution π = (π1, π2, . . . , πN) ∈ R1×N which can be determined by solving

{
πΓ = 0

subject to
∑N

j=1 πj = 1 and πj > 0 for all j ∈ S.

Let | · | denote both the Euclidean norm in Rn and the trace (or Frobenius) norm in
Rn×m. If A is a vector or matrix, its transpose is denoted by AT . The inner product of
x, y in Rn is denoted by 〈x, y〉. We use a.s. to mean almost surely. We will denote the
indicator function of a set G by IG.

We are concerned with the n-dimensional nonlinear hybrid SDE

dx(t) = f(x(t), r(t))dt+ g(x(t), r(t))dB(t) (2.1)

on t ≥ 0, given x(0) = x0 6= 0 in Rn and r(0) = i0 ∈ S. As a standing hypothesis, we
assume that f, g : Rn × S → Rn are smooth enough for the SDE (2.1) to have a unique
global solution x(t) on [0,∞) (see, for example, [16], for sufficient conditions). We make
two remarks.

• Scalar Brownian motion B(t) is used to make the analysis in Sections 4 and 5 more
accessible. In Section 6 we state how our results can be extended to the case of
multidimensional noise.

• The restriction to a deterministic initial condition is convenient and does not lose
any generality when almost sure asymptotic stability is studied; see, for example,
[13, 14, 15].

We now introduce the EM method and the BEM method. The methods make use of
the following lemma (see [1]).

Lemma 2.1 Given a time step ∆ > 0, let r∆
k = r(k∆) for k ≥ 0. Then {r∆

k , k =
0, 1, 2, . . .} is a discrete time N-state Markov chain with the one-step transition probability
matrix

P (∆) = (Pij(∆))N×N = e∆Γ. (2.2)

Given a fixed step size ∆ ∈ (0, 1) and the one-step transition probability matrix P (∆)
in (2.2), the discrete Markov chain {r∆

k , k = 0, 1, 2, . . .} can be simulated as follows: Let
r∆

0 = i0 and compute a pseudo-random number ξ1 from the uniform (0, 1) distribution.
Define

r∆
1 =

{
i1 if i1 ∈ S− {N} such that

∑i1−1
j=1 Pi0,j(∆) ≤ ξ1 <

∑i1
j=1 Pi0,j(∆),

N if
∑N−1

j=1 Pi0,j(∆) ≤ ξ1,

where we set
∑0

j=1 Pi0,j(∆) = 0 as usual. In other words, we ensure that the probability

of state s being chosen is given by P(r∆
1 = s) = Pi0,s(∆). Generally, having computed
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r0, r1, r2, . . . , rk, we compute rk+1 by drawing a uniform (0, 1) pseudo-random number
ξk+1 and setting

r∆
k+1 =

{
ik+1 if ik+1 ∈ S− {N} such that

∑ik+1−1
j=1 Pr∆

k ,j
(∆) ≤ ξk+1 <

∑ik+1

j=1 Pr∆
k ,j

(∆),

N if
∑N−1

j=1 Pr∆
k ,j

(∆) ≤ ξk+1.

This procedure can be carried out independently to obtain more trajectories.

Having explained how to simulate the discrete Markov chain, we now define the EM
approximation for the hybrid SDE (2.1). The discrete approximations Xk ≈ x(tk), with
tk = k∆, are formed by setting X0 = x0, r

∆
0 = i0 and, generally,

Xk+1 = Xk + f(Xk, r
∆
k )∆ + g(Xk, r

∆
k )∆Bk, k ≥ 0, (2.3)

where ∆Bk = B(tk+1) − B(tk). In words, r∆
k defines which of the N SDEs is currently

active, and we apply the EM to this SDE. Compared with the numerical analysis of
standard SDEs, a new source of error arises in the method (2.3): the switching can only
occur at discrete time points {tk}, whereas for the underlying continuous-time problem
(2.1) the Markov chain can produce a switch at any point in time.

Similarly, the BEM method applied to (2.1) produces approximations Xk ≈ x(tk),
where X0 = x0, r

∆
0 = i0 and, generally,

Xk+1 = Xk + f(Xk+1, r
∆
k )∆ + g(Xk, r

∆
k )∆Bk, k ≥ 0. (2.4)

For the BEM method to be well-defined, we will impose condition (4.1) below and will
explain in Section 5 that under (4.1) the BEM method is well-defined for sufficiently small
step size ∆.

3 Motivating Example

Let r(t) be a Markov chain with the state space S = {1, 2} and the generator

Γ =

[
−γ12 γ12

γ21 −γ21

]
,

where γ12 > 0 and γ21 > 0. It is easy to see that its unique stationary distribution
π = (π1, π2) ∈ R1×2 is given by

π1 =
γ21

γ12 + γ21

, π2 =
γ12

γ12 + γ21

.

Consider the scalar hybrid cubic SDE

dx(t) = [α(r(t))x(t)− x3(t)]dt+ β(r(t))x(t)dB(t), (3.1)

where
α(1) = 1, β(1) = 2, α(2) = 0.5, β(2) = 1.

4
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It follows from Corollary 4.5 in Section 4 below that

lim sup
t→∞

1

t
log |x(t)| ≤ π1[α(1)− 0.5β2(1)] + π2[α(2)− 0.5β2(2)]

= − γ21

γ12 + γ21

a.s. (3.2)

In other words, the SDE (3.1) is almost surely exponentially stable.

The question is: Can the EM method preserve this almost sure exponential stability?
The answer is no. To show this, recall that the EM method (2.3) applied to (3.1) produces

Xk+1 = Xk

(
1 + ∆α(r∆

k )−∆X2
k + β(r∆

k )∆Bk

)
. (3.3)

Lemma 3.1 Let {Xk}k≥1 be defined by (3.3). Suppose 0 < ∆ < 1. Then the conditional
probability

P
(
|Xk+1| ≥

2k+2

√
∆
, ∀ k ≥ 1

∣∣∣ |X1| ≥
22

√
∆

)
≥ exp

(
− 2

2e2 − 1

)
.

Proof. First, we show that, for k ≥ 1,

|Xk| ≥
2k+1

√
∆

and |∆Bk| ≤ 2k ⇒ |Xk+1| ≥
2k+2

√
∆
. (3.4)

To see this, we compute

|Xk+1| ≥ |Xk|
∣∣∆X2

k − 1− |α(r∆
k )|∆− |β(r∆

k )||∆Bk|
∣∣

≥ 2k+1

√
∆

∣∣22k+2 − 1−∆− 2|∆Bk|
∣∣

≥ 2k+1

√
∆

(
2k+2 − 2− 2k+1

)

=
2k+2

√
∆

(
2k − 1

)

≥ 2k+2

√
∆
.

It then follows from (3.4) that
(
|X1| ≥

22

√
∆

and |∆Bk| ≤ 2k, ∀ k ≥ 1

)
⊂
(
|Xk| ≥

2k+1

√
∆
, ∀ k ≥ 1

)
.

Since X1 and ∆Bk (k ≥ 1) are all independent,

P
(
|X1| ≥

22

√
∆

)
P
(
|∆Bk| ≤ 2k, ∀ k ≥ 1

)
≤ P

(
|Xk| ≥

2k+1

√
∆
, ∀ k ≥ 1

)
.

This implies

P
(
|Xk+1| ≥

2k+2

√
∆
, ∀ k ≥ 1

∣∣∣ |X1| ≥
22

√
∆

)
≥ P

(
|∆Bk| ≤ 2k ∀ k ≥ 1

)

=
∞∏

k=1

P
(
|∆Bk| ≤ 2k

)
. (3.5)

5
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Now, because ∆Bk ∼ N(0,∆) and ∆ < 1, we have

P
(
|∆Bk| ≥ 2k

)
= P

(
|∆Bk|/

√
∆ ≥ 2k/

√
∆
)

≤ P
(
|∆Bk|/

√
∆ ≥ 2k

)

=
2√
2π

∫ ∞

2k

e−x
2/2 dx

≤ 2

2k
√

2π

∫ ∞

2k

xe−x
2/2 dx

≤ 1

2k
exp

(
−22k−1

)
.

Hence, in (3.5)

P
(
|Xk+1| ≥

2k+2

√
∆
, ∀ k ≥ 1

∣∣∣ |X1| ≥
22

√
∆

)
≥
∞∏

k=1

(
1− 1

2k
exp

(
−22k−1

))
.

Since
log(1− u) ≥ −2u, for 0 < u < 1

2
,

we then have

log

(
P
(
|Xk+1| ≥

2k+2

√
∆
, ∀ k ≥ 1

∣∣∣ |X1| ≥
22

√
∆

))
≥

∞∑

k=1

log

(
1− 1

2k
exp

(
−22k−1

))

≥ −
∞∑

k=1

1

2k−1
exp

(
−22k−1

)
. (3.6)

But, using 22k−1 ≥ 2k,

∞∑

k=1

1

2k−1
exp

(
−22k−1

)
≤

∞∑

k=1

1

2k−1
e−2k = e−2

∞∑

k=1

1

(2e2)k−1
=

2

2e2 − 1
.

Hence, in (3.6),

log

(
P
(
|Xk+1| ≥

2k+2

√
∆
, ∀ k ≥ 1

∣∣∣ |X1| ≥
22

√
∆

))
≥ − 2

2e2 − 1

and the result follows.

Lemma 3.1 shows that

P
(
|Xk| ≥

2k+1

√
∆
, ∀ k ≥ 1

)
≥ exp

(
− 2

2e2 − 1

)
P
(
|X1| ≥

22

√
∆

)
.

But we note that given any x(0) 6= 0 and any ∆ > 0, there is a non-zero probability that
the first Brownian increment, ∆B1, will cause |X1| ≥ 22/

√
∆, namely

P
(
|X1| ≥

22

√
∆

)
> 0.

6
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Hence

P
(
|Xk| ≥

2k+1

√
∆
, ∀ k ≥ 1

)
> 0.

In other words, there is a non-zero probability that EM will produce a numerical solution
that blows up at a geometric rate. This contrasts with the almost sure exponential
stability of the underlying SDE, shown by (3.2).

For example, we set γ12 = 1 and γ21 = 4. Figures 3.1 and 3.2 show the results of
two computer simulations based on the EM method with step size ∆ = 0.001 and initial
values (x(0), r(0)) = (20, 1) and (50, 1), respectively. Both simulations show that the EM
method does not capture the stability property of the underlying SDE (3.1), while the
second simulation shows that the EM method can blow up very quickly.

0 2 4 6 8 10

1.0
1.2

1.4
1.6

1.8
2.0

t

r(t)

0 2 4 6 8 10

0
5

10
15

20

t

x(t)

Figure 3.1: Computer simulation of the path x(t) and corresponding state r(t), using
the EM method with step size ∆ = 0.001, and initial values (x(0), r(0)) = (20, 1). The

generator parameters are γ12 = 1 and γ21 = 4, and the SDE parameters are
α(1) = 1, β(1) = 2, α(2) = 0.5, β(2) = 1.

4 Stability Criteria

The motivating example above shows that in the case of general nonlinear hybrid SDEs
the EM method cannot guarantee to preserve the almost sure exponential stability, even
for arbitrarily small step sizes. However, we will show that the BEM method can preserve
the stability for a class of nonlinear hybrid SDEs. We look for conditions under which
positive results of the BEM method can be derived in the small step size setting. In this
section we will establish some sufficient conditions under which the hybrid SDE (2.1) is
almost surely exponentially stable, while in the next section we will show that under these
conditions the BEM method can preserve this stability. Let us first state the conditions.

7
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Figure 3.2: Computer simulation of the path x(t) and state r(t), using the EM method
with step size ∆ = 0.001, and initial values (x(0), r(0)) = (50, 1). The generator

parameters are γ12 = 1 and γ21 = 4, and the SDE parameters are
α(1) = 1, β(1) = 2, α(2) = 0.5, β(2) = 1.

Assumption 4.1 Assume that for each k = 1, 2, . . ., there is an hk > 0 such that

|f(x, i)| ≤ hk|x|

for all i ∈ S and those x ∈ Rn with |x| ≤ k and, moreover, there is an h > 0 such that

|g(x, i)| ≤ h|x| ∀(x, i) ∈ Rn × S.

Assumption 4.2 Assume that there is a symmetric positive-definite matrix Q ∈ Rn×n

and constants µi (i ∈ S) such that

(x− y)TQ(f(x, i)− f(y, i)) ≤ µi(x− y)TQ(x− y), ∀x, y ∈ Rn (4.1)

and

σi := sup
x∈Rn,x 6=0

(
gT (x, i)Qg(x, i)

xTQx
− 2|xTQg(x, i)|2

(xTQx)2

)
<∞. (4.2)

We first note that Assumption 4.1 implies that

f(0, i) = 0 and g(0, i) = 0 for all i ∈ S. (4.3)

It is therefore easy to observe that the solution of equation (2.1) will remain zero if it
starts from zero (x0 = 0). In other words, zero is an equilibrium or stationary state. This
solution x(t) ≡ 0 is often called a trivial solution. However it is not so obvious to observe
from Assumption 4.1 that any solution of equation (2.1) starting from a non-zero state
will remain non-zero. In the sequel we will need this non-zero property so we cite a result
from [16, Lemma 5.1 on page 164].

8
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Lemma 4.3 Under Assumption 4.1, if x0 6= 0, then the solution of equation (2.1) obeys

P{x(t) 6= 0 on t ≥ 0} = 1.

That is, almost all the sample paths of any solution of equation (2.1) starting from a
non-zero state will never be zero.

We next observe from (4.1) and (4.3) that

xTQf(x, i) ≤ µix
TQx, ∀x ∈ Rn. (4.4)

We will see from the proof of the next theorem that this is the condition we need for
stability. The reason why we impose the stronger condition (4.1) instead of this (4.4) is to
guarantee that the BEM (2.4) is well defined (see the details in the beginning of Section
5).

Theorem 4.4 Let Assumptions 4.1 and 4.2 hold. If
∑

i∈S
πi(µi + 0.5σi) < 0, (4.5)

then the solution of equation (2.1) obeys

lim sup
1

t
log(|x(t)|) ≤

∑

i∈S
πi(µi + 0.5σi) a.s. (4.6)

for all x0 ∈ Rn. In other words, (the trivial solution of) equation (2.1) is almost surely
exponentially stable.

To highlight the numerical analysis in this paper we defer the proof of this theorem
to the Appendix.

If we let Q in Assumption 4.2 be the identity matrix, we obtain the following useful
corollary.

Corollary 4.5 Let Assumption 4.1 hold. Assume that there are constants µi (i ∈ S) such
that

(x− y)T (f(x, i)− f(y, i)) ≤ µi|x− y|2, ∀x, y ∈ Rn (4.7)

and

σi := sup
x∈Rn,x 6=0

( |g(x, i)|2
|x|2 − 2|xTg(x, i)|2

|x|4
)
<∞. (4.8)

If
∑

i∈S πi(µi + 0.5σi) < 0, then the solution of equation (2.1) obeys (4.6).

As an example, let us verify (3.2). It follows from (3.1) that

f(x, i) = α(i)x− x3 and g(x, i) = β(i)x

for (x, i) ∈ R× {1, 2}. Hence

(x− y)(f(x, i)− f(y, i)) = α(i)|x− y|2 − (x− y)(x3 − y3) ≤ α(i)|x− y|2

9
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and

sup
x∈R,x 6=0

( |g(x, i)|2
|x|2 − 2|xTg(x, i)|2

|x|2
)

= −β2(i).

In other words, (4.7) and (4.8) hold with µi = α(i) and σi = −β2(i). Compute

2∑

i=1

πi(µi + 0.5σi) =
2∑

i=1

πi(α(i)− 0.5β2(i)) = − γ21

γ12 + γ21

.

Hence (3.2) follows from Corollary 4.5.

5 Stability of the BEM Method

In this section we will show that the BEM method can preserve the almost sure exponential
stability described in Theorem 4.4. First of all, let us explain that the BEM method (2.4)
is well-defined under condition (4.1) and this follows from the following lemma.

Lemma 5.1 Let (4.1) hold and ∆ < (maxi∈S |µi|)−1. Then for any i ∈ S and b ∈ Rn,
there is a unique root x ∈ Rn of the equation

x = b+ f(x, i)∆. (5.1)

Proof. Since Q is a symmetric positive-definite matrix, we can define its square root

matrix Q
1
2 in the sense

(Q
1
2 )TQ

1
2 = Q.

Define F : Rn × S→ Rn by

F (y, i) = Q
1
2f((Q

1
2 )−1y, i), (y, i) ∈ Rn × S.

Then, for any y1, y2 ∈ Rn, setting x1 = (Q
1
2 )−1y1 and x2 = (Q

1
2 )−1y2, we compute, by

condition (4.1), that

〈y1 − y2, F (y1, i)− F (y2, i)〉 = 〈Q
1
2 (x1 − x2), Q

1
2 (f(x1, i)− f(x2, i))〉

= (x1 − x2)TQ(f(x1, i)− f(x2, i)) ≤ µi(x1 − x2)TQ(x1 − x2)

= µi|Q
1
2 (x1 − x2)|2 = µi|y1 − y2|2.

In other words, for each i ∈ S, F (·, i) obeys the one-sided Lipschitz condition ([6, 9]). It
is therefore known (see e.g. [16, 20]) that if ∆ < (maxi∈S |µi|)−1, then for any b ∈ Rn,
there is a unique root y ∈ Rn of the equation

y = Q
1
2 b+ F (y, i)∆. (5.2)

This is equivalent to

y = Q
1
2 b+Q

1
2f((Q

1
2 )−1y, i)∆

10
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or

(Q
1
2 )−1y = b+ f((Q

1
2 )−1y, i)∆.

By setting x = (Q
1
2 )−1y, this becomes

x = b+ f(x, i)∆.

In other words, we have shown that there is a root x of equation (5.1) which is given by

x = (Q
1
2 )−1y.

To show the uniqueness, we let x̄ be another root of equation (5.1), namely x̄ =
b+ f(x̄, i)∆. Then

Q
1
2 x̄ = Q

1
2 b+Q

1
2f(x̄, i)∆ = Q

1
2 b+ F (Q

1
2 x̄, i)∆.

Hence Q
1
2 x̄ = y because y is the unique root of equation (5.2). We therefore must have

x̄ = x. This completes the proof.

Let us now show that the BEM method can preserve the almost sure exponential
stability described in Theorem 4.4.

Theorem 5.2 Let Assumptions 4.1 and 4.2 hold, as well as condition (4.5). Then for any
ε ∈ (0, λ), where λ = |∑i∈S πi(µi + 0.5σi)|, there is ∆? ∈ (0, 1) with 2∆?(maxi∈S |µi|) < 1
such that for any ∆ < ∆?, the BEM method (2.4) has the property that

lim sup
k→∞

1

k∆
log |Xk| ≤

∑

i∈S
πi(µi + 0.5σi) + ε < 0 a.s. (5.3)

The proof of this theorem is based on the following lemma, which is a simple version
of the theorem.

Lemma 5.3 Let Assumption 4.1 hold, as well as conditions (4.7), (4.8) and (4.5). Then
the conclusion of Theorem 5.2 holds.

We defer the proof of this lemma to the Appendix in order to highlight the following
proof of our main result.

Proof of Theorem 5.2. We will use the notation defined in the proof of Lemma 5.1.
We observe from the proof there that the function F defined there obeys condition (4.7).
Define, moreover, G : Rn × S→ Rn by

G(y, i) = Q
1
2 g((Q

1
2 )−1y, i), (y, i) ∈ Rn × S.

For any y ∈ Rn and y 6= 0, setting x = (Q
1
2 )−1y, we compute

|G(y, i)|2
|y|2 =

|Q
1
2 g(x, i)|2

|Q
1
2x|2

=
gT (x, i)(Q

1
2 )TQ

1
2 g(x, i)

xT (Q
1
2 )TQ

1
2x

=
gT (x, i)Qg(x, i)

xTQx

11
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and

|yTG(y, i)|2
|y|4 =

|xT (Q
1
2 )TQ

1
2 g(x, i)|2

|xT (Q
1
2 )TQ

1
2x|2

=
|xTQg(x, i)|2
|xTQx|2 .

Hence, by Assumption 4.2,

sup
y∈Rn,y 6=0

( |G(y, i)|2
|y|2 − 2|yTG(y, i)|2

|y|4
)

= sup
x∈Rn,x 6=0

(
gT (x, i)Qg(x, i)

xTQx
− 2|xTQg(x, i)|2

(xTQx)2

)

=σi <∞.

In other words, the function G obeys condition (4.8). It is also easy to see that the
functions F and G satisfy Assumption 4.1.

Now, for the BEM approximations Xk defined by (2.4), set Yk = Q
1
2Xk. It follows

from (2.4) that

Q
1
2Xk+1 = Q

1
2Xk +Q

1
2f(Xk+1, r

∆
k )∆ +Q

1
2 g(Xk, r

∆
k )∆Bk,

whence

Yk+1 = Yk +Q
1
2f((Q

1
2 )−1Yk+1, r

∆
k )∆ +Q

1
2 g((Q

1
2 )−1Yk, r

∆
k )∆Bk

= Yk + F (Yk+1, r
∆
k )∆ +G(Yk, r

∆
k )∆Bk. (5.4)

In other words, Yk (k ≥ 0) are the approximations when the BEM method is applied to
the following hybrid SDE

dy(t) = F (y(t), t)dt+G(y(t), t)dB(t) (5.5)

with initial value y(0) = Q
1
2x0. By Lemma 5.3, for any ε ∈ (0, λ), there is ∆? ∈ (0, 1)

with 2∆?(maxi∈S |µi|) < 1 such that for any ∆ < ∆?, the approximations Yk (k ≥ 0)
defined by (5.4) obey

lim sup
k→∞

1

k∆
log |Yk| ≤

∑

i∈S
πi(µi + 0.5σi) + ε < 0 a.s.

This implies that the BEM method (2.4) obeys

lim sup
k→∞

1

k∆
log |Xk| ≤

∑

i∈S
πi(µi + 0.5σi) + ε < 0 a.s.

as required. The proof is therefore complete.

12



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

6 Generalisation

So far, in order to streamline the presentation, we have only considered scalar noise. In
this section we state, without proof, how the results generalize to the multidimensional
noise case, as follows:

dx(t) = f(x(t), r(t))dt+
d∑

j=1

gj(x(t), r(t))dBj(t) (6.1)

on t ≥ 0, given x(0) = x0 6= 0 in Rn and r(0) = i0 ∈ S. Here (B1(t), . . . , Bd(t)) is a
d-dimensional Brownian motion and is independent of the Markov chain r(t). As before,
we assume, as a standing hypothesis, that f, g1, . . . , gd : Rn× S→ Rn are smooth enough
for the hybrid SDE (6.1) to have a unique global solution x(t) on [0,∞). For the purpose
of stability, we impose the following assumptions.

Assumption 6.1 Assume that for each k = 1, 2, · · · , there is an hk > 0 such that

|f(x, i)| ≤ hk|x|

for all i ∈ S and those x ∈ Rn with |x| ≤ k and, moreover, there is an h > 0 such that

|gj(x, i)| ≤ h|x| ∀(x, i) ∈ Rn × S, 1 ≤ j ≤ d.

Assumption 6.2 Assume that there is a symmetric positive-definite matrix Q ∈ Rn×n

and constants µi (i ∈ S) such that

(x− y)TQ(f(x, i)− f(y, i)) ≤ µi(x− y)TQ(x− y), ∀x, y ∈ Rn (6.2)

and

σi := sup
x∈Rn,x 6=0

{
d∑

j=1

(
gTj (x, i)Qgj(x, i)

xTQx
− 2|xTQgj(x, i)|2

(xTQx)2

)}
<∞. (6.3)

The following generalization of Theorem 4.4 gives a criterion for the almost sure
moment exponential stability of the SDE.

Theorem 6.3 Let Assumptions 6.1 and 6.2 hold and assume that

∑

i∈S
πi(µi + 0.5σi) < 0. (6.4)

Then the solution of equation (6.1) obeys

lim sup
1

t
log(|x(t)|) ≤

∑

i∈S
πi(µi + 0.5σi) a.s. (6.5)

for all x0 ∈ Rn.

13
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This theorem can be proved in a similar way to Theorem 4.4.

The BEM method applied to (6.1) produces approximations Xk ≈ x(k∆) with X0 =
x(0) and

Xk+1 = Xk + f(Xk+1, r
∆
k ) +

d∑

j=1

gj(Xk, r
∆
k )∆Bjk, (6.6)

where ∆Bjk := Bj((k + 1)∆)−Bj(k∆).

Theorem 6.4 Under the same conditions of Theorem 6.3, for any ε ∈ (0, λ), where
λ = |∑i∈S πi(µi+ 0.5σi)|, there is ∆? ∈ (0, 1) with 2∆?(maxi∈S |µi|) < 1 such that for any
∆ < ∆?, the BEM method (6.6) has the property that

lim sup
k→∞

1

k∆
log |Xk| ≤

∑

i∈S
πi(µi + 0.5σi) + ε < 0 a.s. (6.7)

This theorem can be proved in the same way as the scalar noise version, Theorem 5.2,
was proved.

7 Example and Simulations

Let us now return to the SDE (3.1). In Section 3 we have shown that the EM method
cannot reproduce the almost sure exponential stability of the SDE. However, our the-
ory established in the previous sections shows that the BEM method can reproduce the
stability. To illustrate our theory, as well as to compare to the simulations in Section
3, we set the system parameters γ12 = 1 and γ21 = 4 as before and use the same step
size ∆ = 0.001, and the same SDE parameters α(1) = 1, β(1) = 2, α(2) = 0.5, β(2) = 1.
The two simulations shown in Figures 7.1 and 7.2 are based on the BEM method with
initial values set as before to (x(0), r(0)) = (20, 1) and (50, 1), respectively. Both figures
show clearly that the BEM method reproduces the almost sure exponential stability of
the underlying SDE (3.1).

14
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Figure 7.1: Computer simulation of the path x(t) and corresponding state r(t), using
the BEM method with step size ∆ = 0.001, and initial values (x(0), r(0)) = (20, 1). The

generator parameters are γ12 = 1 and γ21 = 4, and the SDE parameters are
α(1) = 1, β(1) = 2, α(2) = 0.5, β(2) = 1.
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Figure 7.2: Computer simulation of the path x(t) and state r(t), using the BEM method
with step size ∆ = 0.001, and initial values (x(0), r(0)) = (50, 1). The generator

parameters are γ12 = 1 and γ21 = 4, and the SDE parameters are
α(1) = 1, β(1) = 2, α(2) = 0.5, β(2) = 1.

A Appendix: Proof of Theorem 4.4

In this appendix we prove Theorem 4.4. Clearly, assertion (4.6) holds when x0 = 0 since
in this case the solution x(t) ≡ 0. Fix any initial value x0 6= 0. By Lemma 4.3, with

15
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probability one this solution x(t) will never reach zero. We can then apply the Itô formula
to log(xT (t)Qx(t)) to obtain that

d[log(xT (t)Qx(t))] =

[
2xT (t)Qf(x(t), r(t))

xT (t)Qx(t)
+
gT (x(t), r(t))Qg(x(t), r(t))

xT (t)Qx(t)

−2|xT (t)Qg(x(t), r(t))|2
(xT (t)Qx(t))2

]
dt

+
2xT (t)Qg(x(t), r(t))

xT (t)Qx(t)
dB(t).

By Assumption 4.2 (namely (4.2) and (4.4)), we obtain that

log(xT (t)Qx(t)) ≤ log(xT0Qx0)) +

∫ t

0

[
2µr(s) + σr(s)

]
ds+M(t), (A.1)

where

M(t) =

∫ t

0

2xT (s)Qg(x(s), r(s))

xT (s)Qx(s)
dB(s)

is a continuous martingale vanishing at t = 0. The quadratic variation of the martingale
is given by

〈M(t)〉 =

∫ t

0

4|xT (s)Qg(x(s), r(s))|2
(xT (s)Qx(s))2

ds.

By Assumption 4.1, we see that

〈M(t)〉 ≤ 4h2‖Q‖2t

(λmin(Q))2
.

Hence, by the strong law of large numbers for martingales (see e.g. [15, Theorem 3.4 on
page 12]), we have

lim
t→∞

M(t)

t
= 0 a.s.

We can therefore divide both sides of (A.1) by t and then let t→∞ to obtain

lim sup
t→∞

1

t
log(xT (t)Qx(t)) ≤ lim sup

t→∞

1

t

∫ t

0

[
2µr(s) + σr(s)

]
ds. (A.2)

But, by the ergodic property of the Markov chain (see e.g. [1]) we have

lim
t→∞

1

t

∫ t

0

[
2µr(s) + σr(s)

]
ds =

∑

i∈S
πi(2µi + σi) a.s.

Hence

lim sup
t→∞

1

t
log(xT (t)Qx(t)) ≤

∑

i∈S
πi(2µi + σi) a.s.

This implies immediately that

lim sup
t→∞

1

t
log(|x(t)|) ≤ 1

2

∑

i∈S
πi(2µi + σi) a.s.,

which is the required assertion (4.6).
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B Appendix: Proof of Lemma 5.3

The proof borrows heavily from [17] but for the completeness of the paper we present the
details here. The proof is very technical so we divide it into three steps.

Step 1. From (2.4), we have

|Xk+1|2 = 〈Xk+1, f(Xk+1, r
∆
k )〉∆ + 〈Xk+1, Xk + g(Xk, r

∆
k )∆Bk〉.

By Assumption 4.1 and condition (4.7), we have

〈Xk+1, f(Xk+1, r
∆
k )〉 ≤ µr∆

k
|Xk+1|2.

But,

〈Xk+1, Xk + g(Xk, r
∆
k )∆Bk〉 ≤ 1

2
|Xk+1|2 + 1

2
|Xk + g(Xk, r

∆
k )∆Bk|2.

We hence obtain

|Xk+1|2 ≤
1

1− 2µr∆
k

∆
|Xk + g(Xk, r

∆
k )∆Bk|2

=
1

1− 2µr∆
k

∆

(
|Xk|2 + 2〈Xk, g(Xk, r

∆
k )〉∆Bk + |g(Xk, r

∆
k )|2|∆Bk|2

)

=
|Xk|2

1− 2µr∆
k

∆
(1 + ζk(r

∆
k )),

where

ζk(r
∆
k ) =

1

|Xk|2
(
2〈Xk, g(Xk, r

∆
k )〉∆Bk + |g(Xk, r

∆
k )|2|∆Bk|2

)

if Xk 6= 0, otherwise it is set to −1. Clearly, ζk ≥ −1. Let Gt = σ({r(u)}u≥0, {B(s)}0≤s≤t),
namely the σ-algebra generated by {r(u)}u≥0 and {B(s)}0≤s≤t. For any p ∈ (0, 1), recall
the fundamental inequality

(1 + u)p/2 ≤ 1 +
p

2
u+

p(p− 2)

8
u2 +

p(p− 2)(p− 4)

48
u3, u ≥ −1. (B.1)

We then have

E(|Xk+1|p
∣∣Gk∆) ≤ |Xk|p

(1− 2µr∆
k

∆)p/2
I{Xk 6=0}

× E
(

1 +
p

2
ζk(r

∆
k ) +

p(p− 2)

8
ζ2
k(r∆

k ) +
p(p− 2)(p− 4)

48
ζ3
k(r∆

k )
∣∣∣Gk∆

)
.

(B.2)

Now,

I{Xk 6=0}E(ζk(r
∆
k )|Gk∆)

=I{Xk 6=0}E
( 1

|Xk|2
(
2〈Xk, g(Xk, r

∆
k )〉∆Bk + |g(Xk, r

∆
k )|2|∆Bk|2

)∣∣Gk∆

)

=I{Xk 6=0}
1

|Xk|2
(

2〈Xk, g(Xk, r
∆
k )〉E(∆Bk|Gk∆) + |g(Xk, r

∆
k )|2E(|∆Bk|2|Gk∆)

)
.
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Since ∆Bk is independent of Gk∆, we have

E(∆Bk|Gk∆) = E(∆Bk) = 0 and E(|∆Bk|2|Gk∆) = E(|∆Bk|2) = ∆.

Hence

I{Xk 6=0}E(ζk(r
∆
k )|Gk∆) = I{Xk 6=0}

|g(Xk, r
∆
k )|2

|Xk|2
∆. (B.3)

Making use of the properties

E((∆Bk)
2i) = (2i− 1)!!∆i and E((∆Bk)

2i−1) = 0

for i = 1, 2, · · · , where (2i− 1)!! = (2i− 1)(2i− 3) · · · 3 · 1, we compute similarly that

I{Xk 6=0}E(ζ2
k(r∆

k )|Gk∆) =I{Xk 6=0}
(4〈Xk, g(Xk, r

∆
k )〉2

|Xk|4
∆ +

|g(Xk, r
∆
k )|4

|Xk|4
3∆2

)

≥I{Xk 6=0}
4〈Xk, g(Xk, r

∆
k )〉2

|Xk|4
∆ (B.4)

and

I{Xk 6=0}E(ζ3
k(r∆

k )|Gk∆)

=I{Xk 6=0}
1

|Xk|6
(

36〈Xk, g(Xk, r
∆
k )〉2|g(Xk, r

∆
k )|2∆2 + 15|g(Xk, r

∆
k )|6∆3

)

≤I{Xk 6=0}c1∆2, (B.5)

where c1 = c1(h) = 36h4 + 15h6 and the h is specified in Assumption 4.1. Substituting
(B.3)-(B.5) into (B.2) and then using (4.8) and Assumption 4.1, we derive that

E(|Xk+1|p
∣∣Gk∆) ≤ |Xk|p

(1− 2µr∆
k

∆)p/2
I{Xk 6=0}

×
(

1 +
p

2

|g(Xk, r
∆
k )|2

|Xk|2
∆ +

p(p− 2)

8

4〈Xk, g(Xk, r
∆
k )〉2

|Xk|4
∆ + c2∆2

)

≤ |Xk|p
(1− 2µr∆

k
∆)p/2

(
1 + 1

2
pσr∆

k
∆ + 1

2
p2h2∆ + c2∆2

)
, (B.6)

where c2 = c2(h, p) = c1(h)p(p− 2)(p− 4)/48.

Step 2. Now, for any ε ∈ (0, λ), we may choose p sufficiently small for ph2 ≤ 1
4
ε.

Then we have
(1− 2µr∆

k
∆)p/2 ≥ 1− pµr∆

k
∆− c3∆2 > 0, (B.7)

for sufficiently small ∆, where c3 = c3(p) is a positive constant. By further reducing ∆, if
necessary, we may ensure that

c2∆ < 1
8
pε, c3∆ < 1

4
pε, |p(µr∆

k
+ 1

4
ε)∆| ≤ 1

2
. (B.8)

Using (B.7) and (B.8) in (B.6) gives

E(|Xk+1|p
∣∣Gk∆) ≤

1 + 1
2
p(σr∆

k
+ 1

2
ε)∆

1− p(µr∆
k

+ 1
4
ε)∆

|Xk|p. (B.9)
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Note that for any u ∈ [−1
2
, 1

2
]

1

1− u = 1 + u+ u2

∞∑

i=0

ui ≤ 1 + u+ u2

∞∑

i=0

(1
2
)i = 1 + u+ 2u2.

By further reducing ∆, if necessary, so that

2p(µr∆
k

+ 1
4
ε)2∆ + 1

2
(σr∆

k
+ 1

2
ε)
(
p(µr∆

k
+ 1

4
ε)∆ + 2[p(µr∆

k
+ 1

4
ε)∆]2

)
≤ 1

4
ε,

and using (B.9), we compute that

E(|Xk+1|p
∣∣Gk∆) ≤

(
1 + 1

2
p(σr∆

k
+ 1

2
ε)∆

)(
1 + p(µr∆

k
+ 1

4
ε)∆ + 2[p(µr∆

k
+ 1

4
ε)∆]2

)
|Xk|p

≤ [1 + p(µr∆
k

+ 1
2
σr∆

k
+ 3

4
ε)∆]|Xk|p. (B.10)

Since this holds for all k ≥ 0, we further compute

E(|Xk+1|p
∣∣G(k−1)∆) ≤ E(|Xk|p

∣∣G(k−1)∆)[1 + p(µr∆
k

+ 1
2
σr∆

k
+ 3

4
ε)∆]

≤ |Xk−1|p
k∏

z=k−1

[1 + p(µr∆
z

+ 1
2
σr∆

z
+ 3

4
ε)∆].

Repeating this procedure we obtain

E(|Xk+1|p
∣∣G0) ≤ |x0|p

k∏

z=0

[1 + p(µr∆
z

+ 1
2
σr∆

z
+ 3

4
ε)∆].

Taking expectations on both sides yields

E(|Xk+1|p) ≤ |x0|p E exp
( k∑

z=0

log[1 + p(µr∆
z

+ 1
2
σr∆

z
+ 3

4
ε)∆]

)
. (B.11)

If necessary, we can further reduce ∆ to ensure that

p(µi + 1
2
σi + 3

4
ε)∆ > −1, i ∈ S.

Then, by the ergodic property of the Markov chain and inequality

log(1 + x) ≤ x, x > −1,

we compute

lim
k→∞

1

1 + k

k∑

z=0

log[1 + p(µr∆
z

+ 1
2
σr∆

z
+ 3

4
ε)∆] =

∑

i∈S
πi log[1 + p(µi + 1

2
σi + 3

4
ε)∆]

≤ p∆
∑

i∈S
πi(µi + 1

2
σi + 3

4
ε)

= p∆(−λ+ 3
4
ε) a.s.
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This yields

lim
k→∞

(
p∆(λ− ε)(k + 1) +

k∑

z=0

log[1 + p(µr∆
z

+ 1
2
σr∆

z
+ 3

4
ε)∆]

)
= −∞ a.s. (B.12)

However, it follows from (B.11)

ep∆(λ−ε)(k+1)E(|Xk+1|p)

≤ |x0|pE exp
(
p∆(λ− ε)(k + 1) +

k∑

z=0

log[1 + p(µr∆
z

+ 1
2
σr∆

z
+ 3

4
ε)∆]

)
.

By the Fatou lemma (see e.g. [12]) and property (B.12), we hence derive that

lim sup
k→∞

[
ep∆(λ−ε)(k+1)E(|Xk+1|p)

]

≤ |x0|pE
[

lim sup
k→∞

exp
(
p∆(λ− ε)(k + 1) +

k∑

z=0

log[1 + p(µr∆
z

+ 1
2
σr∆

z
+ 3

4
ε)∆]

)]

= 0. (B.13)

Step 3. It follows from (B.13) that there is an integer k0 such that

E(|Xk|p) ≤ e−pk∆(λ−ε), ∀k ≥ k0.

This implies, by the Chebycheff inequality, that

P{|Xk|p > k2e−pk∆(λ−ε)} ≤ 1

k2
, ∀k ≥ k0.

Applying the Borel–Cantelli lemma (see e.g. [15, p17]), we obtain that for almost all
ω ∈ Ω,

|Xk|p ≤ k2e−pk∆(λ−ε) (B.14)

holds for all but finitely many k ≥ k0. Hence, there exists a k1(ω) ≥ k0, for almost all
ω ∈ Ω, for which (B.14) holds whenever k ≥ k1. Consequently, for almost all ω ∈ Ω,

1

k∆
log(|Xk|) ≤

2 log(k)

pk∆
− (λ− ε)

whenever k ≥ k1. Therefore

lim sup
k→∞

1

k∆
log(|Xk|) ≤ −λ+ ε a.s.,

which is the desired assertion (5.3). The proof is complete.
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