Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Mapping directed networks

Crofts, Jonathan and Estrada, Ernesto and Higham, Desmond and Taylor, Alan (2010) Mapping directed networks. ETNA - Electronic Transactions on Numerical Analysis, 37. pp. 337-350. ISSN 1068-9613

[img] Other (File 835345)
ETNA.mht
Final Published Version
License: Unspecified

Download (1MB)

Abstract

We develop and test a new mapping that can be applied to directed unweighted networks. Although not a “matrix function” in the classical matrix theory sense, this mapping converts an unsymmetric matrix with entries of zero or one into a symmetric real-valued matrix of the same dimension that generally has both positive and negative entries. The mapping is designed to reveal approximate directed bipartite communities within a complex directed network; each such community is formed by two set of nodes S1 and S2 such that the connections involving these nodes are predominantly from a node in S1 and to a node in S2. The new mapping is motivated via the concept of alternating walks that successively respect and then violate the orientations of the links. Considering the combinatorics of these walks leads us to a matrix that can be neatly expressed via the singular value decomposition of the original adjacency matrix and hyperbolic functions. We argue that this new matrix mapping has advantages over other, exponential-based measures. Its performance is illustrated on synthetic data, and we then show that it is able to reveal meaningful directed bipartite substructure in a network from neuroscience.