
Structural Patterns in Complex Networks through 
Spectral Analysis 

Ernesto Estrada,  

 
Department of Mathematics and Statistics, Department of Physics and Institute of Complex 

Systems, University of Strathclyde, Glasgow,  
G1 1XQ U.K. 

ernesto.estrada@strath.ac.uk 

Abstr act. The study of some structural properties of networks is introduced 
from a graph spectral perspective. First, subgraph centrality of nodes is defined 
and used to classify essential proteins in a proteomic map. This index is then 
used to produce a method that allows the identification of superhomogeneous 
networks. At the same time this method classify non-homogeneous network 
into three universal classes of structure. We give examples of these classes from 
networks in different real-world scenarios. Finally, a communicability function 
is studied and showed as an alternative for defining communities in complex 
networks. Using this approach a community is unambiguously defined and an 
algorithm for its identification is proposed and exemplified in a real-world 
network. 
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1   Introduction 

The study of complex networks has become a major field of interdisciplinary 
research in XXI century [1-3]. These networks are the skeleton of complex systems in 
a variety of scenarios ranging from social and ecological to biological and 
technological systems [4]. One of the main objectives of this research is the 
understanding of the structural organizational principles of such networks [5]. 
Network structure determines most -if not all- of network functions. Important 
dynamical processes taken place on networks are very much determined by their 
structural organization [6]. Then, some universal topological properties which explain 
some of the dynamical and functional properties of networks have been observed, 
such as ‘small-world’ [7] and ‘scale-free’ [8] phenomena. Despite the ubiquity of 
these phenomena in real-world systems, they have not been able to explain many of 
the structural and dynamical processes involving complex networks. Consequently, 
the search for other structural invariants that describe properties of complex networks 
in terms of structural parameters is needed. Among these other approaches spectral 
methods occupy an important place. 
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Spectral graph theory is a well established branch of the algebraic study of graphs 
[9]. Despite there are many results in this field they are mostly applicable to small 
graphs and not to gigantic complex networks having thousands or even millions of 
nodes. Without an excess of criticisms it can be said that many of the bound found in 
spectral graph theory are very far from the real value when applied to large graphs, 
which make these approximation useless for practical purposes. On the other hand, 
the study of spectral properties of complex networks has been mainly focused to the 
study of the spectral density function in certain classes of random graphs [10-13]. 
This gives little information about the structure of real-world complex networks, 
which differ from random graphs in many structural characteristics.  

Here we attack the problem from a different perspective. We attempt the definition 
of some spectral invariants for nodes and networks which give important structural 
information about the organization of these very large graphs. First, we study the 
characterization of local spectral invariants, in particular subgraph centrality [14] as a 
way for accounting for a ‘mesoscale’ characterization of nodes in a network. Using 
this concept we show analytically the existence of four universal topological classes 
of networks and give examples from the real-world about each of them [15, 16]. 
Finally, we study a communicability function [17] which allows to identify 
communities in complex networks [17, 18]. 

2   Background 

We consider here networks represented by simple graphs ( )EVG ,:= . That is, 
graphs having nV =  nodes and mE =  links, without self-loops or multiple links 
between nodes. Let ( ) AA =G  be the adjacency matrix of the graph whose elements 

ijA  are ones or zeroes if the corresponding nodes i  and j  are adjacent or not, 
respectively. A walk of length k is a sequence of (not necessarily different) vertices 

kk vvvv ,,,, 110 −  such that for each ki ,2,1 =  there is a link from 1−iv  to iv . 
Consequently, these walks communicating two nodes in the network can revisit nodes 
and links several times along the way, which is sometimes called “backtracking 
walks.” Walks starting and ending at the same node are named closed walks. 

Let nλλλ ≥≥≥ 21  be the eigenvalues of the adjacency matrix in the non-
increasing order and let ( )pjϕ  be the p th entry of the j th eigenvector which is 

associated with the eigenvalue jλ  [9]. The number of walks ( )qpk ,µ  of length k  
from node p  to q  is given by 
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3 Local patterns: Subgraph centrality 

A ‘centrality’ measure is a characterization of the ‘importance’ or ‘relevance’ of a 
node in a complex network. The best known example of node centrality is the “degree 
centrality”, DC [4], which is interpreted as a measure of immediate influence of a 
node over its nearest neighbors. Several other centrality measures have been studied 
for real world networks, in particular for social networks. For instance, betweenness 
centrality (BC) measures the number of times that a shortest path between nodes i  
and j  travels through a node k  whose centrality is being measured. On the other 
hand, the farness of a node is the sum of the lengths of the geodesics to every other 
vertex. The reciprocal of farness is closeness centrality (CC). A centrality measure, 
which is not restricted to shortest paths [4], is defined as the principal or dominant 
eigenvector of the adjacency matrix A of a connected network. This centrality 
measure simulates a mechanism in which each node affects all of its neighbors 
simultaneously [4].  In fact, if we designate the number of walks of length L  starting 
at node i  by ( )iNL  and the total number of walks of this length existing in the 
network by ( )GNL . The probability that a walk selected at random in the network has 
started at node i  is simply[19]: 

( ) ( )
( )GN
iNiP

L

L
L =  . 

(2) 

Then, for non-bipartite connected network with nodes n,,2,1  , it is known that for 
∞→L , the vector ( ) ( ) ( )[ ]nPPP LLL 21  tends toward the eigenvector centrality 

of the network [19]. Consequently, the elements of EC represent the probabilities of 
selecting at random a walk of length L  starting at node i  when ∞→L : 

( ) ( )iPiEC L= . 
If we compare degree and eigenvector centrality we can see that the first account 

for very local information about the interaction of a node and its nearest neighbors 
only. However, eigenvector centrality accounts for a more global environment around 
a node, which in fact includes all nodes of the network. Then, an intermediate 
characterization of the centrality of a node is needed in such a way that regions closest 
to the node in question make a larger contribution than those regions which are far 
apart from it. This sort of ‘mesoscopic’ type of centrality is obtained by considering 
the subgraph centrality of a node. 

The subgraph centrality of a node is defined as the weighted sum of all closed 
walks starting and ending at the corresponding node [14]. If we designate by ( )ikµ  
the number of such closed walks of length k  starting and ending at node i , the 
subgraph centrality is given by 
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where the factorial penalization guaranties that walks visiting nearest neighbors 
receive more weights than those visiting very distant nodes. It is straightforward to 



realize that the subgraph centrality of node i  converges to the i th diagonal entry of 
the exponential of the adjacency matrix: 

( ) ( ) ( ) ( ) ( ) ( )
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(4) 

This index can be expressed in terms of the spectrum of the adjacency matrix of 
the corresponding network as [14]: 
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where ( )ijϕ  is the i th entry of the eigenvector associated with the j th eigenvalue 

jλ  of the adjacency matrix.  
The subgraph centrality can be split into the contributions coming from odd and 

even closed walks as follows [20]: 
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The sum of all subgraph centralities for the nodes of a network is known as the 
Estrada index of the graph and has been extensively studied in the mathematical 
literature (see [21, 22] and references therein): 
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In Fig. 1 we illustrate an example of the discriminant power of the subgraph 
centrality for the nodes of a graph. The graph illustrated in Fig. 1 displays the same 
degree, closeness and eigenvector centrality for all nodes. However, subgraph 
centrality identifies the three nodes at the top as the most central as they take part in 
triangles, while the others not. The second group of nodes according to their subgraph 
centrality is formed by two nodes taken place in no triangle but in three squares, while 
the least central nodes take part only in two squares but in no triangle. 



 

Fig. 1. Illustration of a simple graph in which all nodes have the same degree, closeness and 
eigenvector centralities. Subgraph centrality differentiates between three types of nodes, which 
are drawn with sizes proportional to ( )iEE . 

A real-world example of the utility of centrality measures is provided by the 
identification of essential proteins in a protein-protein interaction (PPI) network. A 
PPI is a map of the physical interactions taken place between proteins in a cell. These 
interactions between proteins are responsible for many, if not all, biological functions 
of proteins in a cell. In every organism there are some proteins which are essential for 
the functioning of its cells. Knocking out these essential proteins produces the death 
of this organism. If such organism is a pathogenic one, then essential proteins are 
good targets for drugs attempting to kill such pathogen. Consequently, the in silico 
identification of essential proteins can play an important role in drug design by 
accelerating the process in which some protein targets are identified. Here an example 
is provided about the utility of centrality measures in identifying such essential 
proteins in the yeast PPI.  

The PPI of Saccharomyces cerevisiae (yeast) was compiled by Bu et al. [23] from 
data obtained by von Mering et al. [24] by assessing a total of 80,000 interactions 
among 5400 proteins by assigning each interaction a confidence level. Here we study 
the main connected component of this network consisting of 2224 proteins sharing 
6608 interactions. They were selected from 11,855 interactions between 2617 proteins 
with high and medium confidence in order to reduce the interference of false 
positives, from which Bu et al. [23] reported a network consisting of 2361 nodes and 
6646 links (http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm). We 
illustrate the main connected component of this PPI in Fig. 2A. 

In order to test the efficacy of different centrality measures in identifying essential 
proteins we ranked all proteins in the yeast PPI according to their subgraph, 
eigenvector, degree, closeness and betweenness centrality. Then, we select the top 5% 
of these proteins and analyze which of them has been reported experimentally as 
essential for yeast. As a null model we rank all proteins randomly, select the top 5% 
of these ranks and count the number of essential proteins. We take here the average of 
1000 random realizations. In Fig. 2B we illustrate the results obtained by using this 
approach. As can be seen as average a random selection of proteins in yeast is able to 
identify only 25% of essential proteins. All centrality measures analyzed display 



significantly larger percentages of essential proteins identified than the random 
selection method. Both spectral methods used, the eigenvector centrality and the 
subgraph centrality, identify more than 50% of essential proteins in this proteome. In 
particular, subgraph centrality identifies 56.4% of essential proteins in the top 5% of 
the proteins [25]. In closing, centrality measures which are based only on topological 
information contained in the PPI network account for important biological 
information of yeast proteome. 

 

  
A B 

Fig. 2. (A) Illustration of the protein-protein interaction (PPI) network of yeast. Every node 
represents a protein and two nodes are linked if the corresponding proteins have been found to 
interact physically. Red nodes represent essential proteins, blue represent non-essential and 
yellow represent proteins with unknown essentiality. (B) Percentage of essential proteins 
identified by different centrality measures in the yeast PPI. SC, EC, DC, CC and BC stand for 
subgraph, eigenvector, degree, closeness and betweenness centrality, and Rnd stands for the 
average of 1000 random realizations.  

3   Global patterns 

3.1   Structural classes of networks 

The simplest class of networks we can consider is one consisting of very 
homogeneous structure. In these networks ‘what you see locally is what you get 
globally’. Thus, describing the structure of a part of these networks gives an idea of 
their global topological structures. In order to have a quantitative criterion for 
classifying these networks we can consider a subset of nodes VS ⊆  with cardinality 
S . Let S∂  denotes the boundary of S , which is the number of links between a 

node in S  and a node which is not in this set. Let us introduce the expansion or 
isoperimetric constant of the network as [26]: 
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In a ‘superhomogeneous’ network as the ones described in the previous paragraph it 
is expected that ( ) ( )1OG =φ , which means that the number of links inside the subset 
S  is approximately the same as the number of links going out from it for all the 
subsets VS ⊆  in the network. This means that high expansion implies high 
homogeneity and better connectivity of the network, which means that the number of 
links that must be removed to separate the network into isolated chunks is relatively 
high in comparison with the number of nodes in the network.  

A well-known result in spectral graph theory relates the expansion constant and the 
eigenvalues of the adjacency matrix. That is, if G  is a regular graph with eigenvalues 

nλλλ ≥≥≥ 21 , then the expansion factor is bounded as [26], 

( ) ( )211
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2
λλλφλλ

−≤≤
− G , 

(9) 

which means that a network has good expansion if the gap between the first and 
second eigenvalues of the adjacency matrix ( 12 λλλ −=∆ ) is sufficiently large. In 
closing, a superhomogeneous network, also known as expander, is characterized by a 
very large spectral gap 12 λλλ −=∆ . 

Let us consider what happen to the subgraph centralilty in these superhomogeneous 
networks. Without any loss of generality we study here the contribution of odd closed 
walks to the subgraph centrality ( )iEEodd . We can write the expression (5) in the 
following way by noting that ( ) ( )iiEC 1ϕ=  

( ) ( )[ ] ( ) ( )[ ] ( ),sinhsinh
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Because the network we are considering here is a superhomogeneous one we can 
assume that 21 λλ >>  in such a way that  
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Consequently, in a superhomogeneous network we can approximate the odd-subgraph 
centrality as, 

( ) ( )[ ] ( )1
2 sinh λiECiEEodd ≈  , (12) 

which can be written as a straight line by applying logarithm as [15]: 

( )[ ] ( )[ ]iEEAiEC oddlogloglog η+= , (13) 

where, ( )[ ] 5.0
1sinh −≈ λA  and 5.0≈η . 

We have seen previously that eigenvector centrality is a characterization of a node 
environment that takes into account infinite walks visiting all nodes in the network. 
On the other hand, subgraph centrality is a mesoscopic characterization of the node 



environment giving a measure of the cliquishness of a close neighbourhood around it. 
Consequently, in a superhomogeneous network a log-log plot of ( )iEC  vs. ( )iEEodd  
displays a perfect straight line fit  

( ) ( ) ( )[ ]1sinhlog5.0log5.0log λ−= iEEiEC odd
Homo

 , (14) 

indicating a perfect scaling between local and global environment of a node. In other 
words, “what you see locally is what you get globally” in such networks. Deviations 
from perfect superhomogeneity can be accounted by measuring the departure of the 
points from the straight line respect to ( )iEC Homolog  [16]: 
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Then, using (15) a network with  ( ) 0log ≅∆ iEC is classified as superhomogeneous. 
Other three classes can be identified, which correspond, respectively to the following 
cases [16]: 

(i) ( ) 0log ≤∆ iEC  for all nodes: what you see locally is more densely connected 
that what you get globally, which indicates that the network contains ‘holes’ in its 
structure, 

(ii) ( ) 0log ≥∆ iEC  for all nodes: what you see locally is less densely connected that 
what you get globally, which indicates the existence of a core-periphery structure of 
the network,  

(iii) ( ) 0log ≤∆ iEC  for some nodes and ( ) 0log >∆ iEC  for the rest, which indicates 
the existence of a combination of the previous two patterns in a network.  

The negative and positive deviations from the perfect scaling can be accounted by  
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where ∑+
and ∑−

are the sums carried out for the +N  points having 

( ) 0log 1 >∆ iγ  and for the −N  having ( ) 0log 1 <∆ iγ , respectively. In Fig. 3 we 
illustrate these three patterns of networks together with their spectral scaling. 
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Fig. 3. Illustration of the three patterns of networks that deviate from perfect spectral scaling. 
The spectral scaling is a log-log plot of the eigenvector centrality, EC(i) versus subgraph 
centrality, EE(i) for all nodes in the graph.  

In Fig. 4 we illustrate one example of each of the four structural patterns found in 
complex networks. The first network is a 1997 version of Internet at autonomous 
system, which displays a large homogeneity as can be seen in the perfect spectral 
scaling given in the same figure. The negative and positive deviations from perfect 
scaling for this network are 41021.6 −×  and 31020.1 −× , respectively. The second 
network corresponds to the residue-residue interaction network in the protein with 
Protein Data Bank code (1ash), which corresponds to the structure of Ascaris suum 
hemoglobin domain I at 2.2 angstroms resolution. This network corresponds to the 
class of positive deviations from perfect scaling, which indicates the presence of 
structural holes in its structure. These structural holes correspond to the cavities 
protein structures have, which in many cases display biological functionality and 
represent important binding sites for proteins [27]. The third network correspond to 
the food web of Canton Creek, which is primarily formed by trophic interactions 
between invertebrates and algae in a tributary, surrounded by pasture, of the Taieri 
River in the South Island of New Zealand. This network is characterized by a central 
core of species with a large number of interactions among them and a periphery of 
species which weakly interact to each other and with the central core. The final 
network represents social ties in a karate club in USA, which eventually polarizes into 
two factions due to an internal conflict. It is characterized by two main clusters or 
communities, followers of the administrator and followers of the trainer in which 
intersection the presence of holes is observed. At the same time each of the two 
clusters form some small core-periphery structure giving rise to the spectral scaling 
observed. 

 

 
 



 

 

  

 
 



Fig. 4. Illustration of the four structural patterns in real-world complex networks. The first 
corresponds to Internet autonomous system in 1997, the second is the protein residue network 
of 1ASH, the third represents a food web of Canton Creek and the fourth corresponds to a 
social network of friendship ties in a karate club. 

 
A characteristic feature of all networks which are not superhomogeneous is that 

nodes can be grouped together in certain clusters or communities. These communities 
can play an important role in understanding the structure and dynamics of complex 
networks in different scenarios. There are several approaches to detect communities 
in networks which are used today [28]. In the following section we explain one which 
is based on the concept of communicability between nodes in a network. 

3.2   Communicability and communities in networks 

In continuation with the line we have followed in the previous sections we define the 
communicability between a pair of nodes in a network as follows [17]: 

The communicability between a pair of nodes qp,  in a network is a weighted 
sum of all walks starting at node p  and ending at node q , giving more weight 
to the shortest walks. 

This definition accounts for the known fact that in many situations the communication 
between a pair of nodes in a network does not take place only through the shortest 
path connecting them. A mathematical formulation of this concept is obtained by 
considering the sum of all walks of different lengths that connect nodes p  and q  
[17]: 
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which can be expressed in terms of the eigenvalues and eigenvectors of the adjacency 
matrix as follows 
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The detection of communities by using the communicability function is based on 

the analysis of the sign of the term ( ) ( ) jeqp jj
λϕϕ , which can be either positive or 

negative on the basis of the signs of the p th and q th components of the 
corresponding eigenvector. We can think that the eigenvectors of the adjacency 
matrix represent vibrational normal modes of the network. The sign of the p th 
component of the j th eigenvector indicates the direction of the vibration. If two 
nodes, p  and q , have the sign for the j th eigenvector it indicates that these two 
nodes are vibrating in the same direction. As we have previously seen all entries of 



the principal eigenvector 1ϕ  have the same sign. Consequently, we consider it as a 
translational movement of the whole network. Then, we can divide the 
communicability function into three contributions [17]: 
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where the term ‘intra-cluster’ refers to the sum over all components ( )pjϕ  and ( )qjϕ  

having the same sign. The ‘inter-cluster’ term refer to the case when ( )pjϕ  and 

( )qjϕ  have different signs. Note that the last term, i.e., the inter-cluster’ 
communicability is negative. Then, as we are interested in partitioning the network 
into communities or clusters we simply subtract the translational contribution to 
obtain the difference between intra- and inter-cluster communicability [17]: 
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Note that for computing (19) it is not necessary to make any sign analysis of the 
eigenvectors of the network. It is enough to compute the communicability between 
two nodes and then subtract the translational term, i.e., ( ) ( ) 1

11
λϕϕ eqpGG pqpq −=∆ . 

Now, we can define a community in a network as follows [18]: 

A network community is a group of nodes VC ⊆  for which the intra-cluster 
communicability is larger than the inter-cluster one: 

CqpG qp ∈∀>∆ ),(   0)(, β .  

In practice, in order to find such communities we represent the values of qpG ,∆  
between pairs of nodes as a matrix )(G∆  and then we dichotomize such matrix, such 
that the qp,  entry of the new matrix is 1 if, and only if  0, >∆ qpG and zero 
otherwise. This new matrix can be considered as the adjacency matrix of a new graph, 
which we call the communicability graph )(GΘ [18]. The nodes of )(GΘ  are the 
same as the nodes of G , and two nodes  p  and q  in )(GΘ  are connected if, and 
only if, 0, >∆ qpG  in G . Finally, a community is identified as a clique in the 
communicability graph [18]. 

As an example we illustrate in Fig. 5 the communicability graph for the social 
network of friendship ties in a karate club given in Fig. 4. The analysis of the cliques 
in this communicability graph indicates the existence of 5 overlapped communities, 
which are given below: 

}34,33,32,31,30,29,28,27,26,24,23,21,19,16,15,10{:1C ; 
}34,33,32,31,30,29,28,27,24,23,21,19,16,15,10,9{:2C ; 

}34,33,32,30,29,28,27,26,25,24,23,21,19,16,15,10{:3C ; 
}22,20,18,17,14,13,12,11,8,7,6,5,4,3,2,1{:4C ; 



}10,3{:5C . 

 

Fig. 5. Communicability graph for the network of friendship ties in a karate club. Circles and 
squares are used to represent the two known communities existing in this network as a 
consequence of its polarization as followers of the administrator and followers of the trainer. 

The overlap between two communities iC  and jC  can be computed by using an 

appropriate index 
jiCCS  [18]. Then, communities can be merged together according 

to a given mergence parameter α in such a way that a new matrix is created 
according to 
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and the process is finished when no pair of communities have overlap larger than α . 
Applying this criterion with 5.0=α  the following two communities are obtained for 
the previously studied network: 53211 CCCCU ∪∪∪=  and 542 CCU ∪= , which 
are the two communities observed experimentally for this network. 

 

4   Conclusions 

The study of spectral invariants is an interesting alternative for characterizing the 
structure and properties of complex networks. We have studied here some invariants 
which are based on the concept of walks in networks and its relation with eigenvalues 
and eigenvectors of the adjacency matrices of such networks. Subgraph centrality, 
spectral scaling and communicability are three of these measures characterizing local 
or global properties of networks. Similar concepts have been extended to study 
betweenness [29], bipartitions [30], as well as to account for other matrix functions 
[31]. Recently, subgraph centrality has been used to study [32] the topological 
evolution in dense granular materials. It proved to be a good indicator of the 
topological dynamic in such materials with very good correlation with the constitutive 



properties of nonaffine deformation and dissipation, spatially and with respect to 
strain. On the other hand, communicability was used as a classifier in human brain 
networks [33]. In this work two groups of brain networks are studied, one group 
corresponds to healthy humans and the other to patients who suffer stroke in the last 
six months. The discriminating power of the communicability function of a 
normalized weighted matrix was higher than other spectral methods for differentiating 
between the two studied groups. All these examples show the versatility of these 
spectral measures for studying the structure and properties of complex networks. 
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