Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Design of highly synchronizable and robust networks

Estrada, Ernesto and Gago, Silvia and Caporossi, Gilles (2010) Design of highly synchronizable and robust networks. Automatica, 46 (11). pp. 1835-1842. ISSN 0005-1098

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper, the design of highly synchronizable, sparse and robust dynamical networks is addressed. Better synchronizability means faster synchronization of the oscillators, sparsity means a low ratio of links per nodes and robustness refers to the resilience of a network to the random failures or intentional removal of some of the nodes/links. Golden spectral dynamical networks (graphs) are those for which the spectral spread (the difference between the largest and smallest eigenvalues of the adjacency matrix) is equal to the spectral gap (the difference between the two largest eigenvalues of the adjacency matrix) multiplied by the square of the golden ratio. These networks display the property of “small-worldness”, are very homogeneous and have large isoperimetric (expansion) constant, together with a very high synchronizability and robustness to failures of individual oscillators. In particular, the regular bipartite dynamical networks, reported here by the first time, have the best possible expansion and consequently are the most robust ones against node/link failures or intentional attacks.