Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Copper-binding properties and structures of methanobactins from methylosinus trichosporium ob3b

El Ghazouani, Abdelnasser and Basle, Arnaud and Firbank, Susan and Knapp, Charles and Gray, Joe and Graham, David and Dennison, Christopher (2011) Copper-binding properties and structures of methanobactins from methylosinus trichosporium ob3b. Inorganic Chemistry, 50 (4). ISSN 0020-1669

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Methanobactins (mbs) are a class of copper-binding peptides produced by aerobic methane oxidizing bacteria (methanotrophs) that have been linked to the substantial copper needs of these environmentally important microorganisms. The only characterized mbs are those from Methylosinus trichosporium OB3b and Methylocystis strain SB2. M. trichosporium OB3b produces a second mb (mb-Met), which is missing the C-terminal Met residue from the full-length form (FL-mb). The as-isolated copper-loaded mbs bind Cu(I). The absence of the Met has little influence on the structure of the Cu(I) site, and both molecules mediate switchover from the soluble iron methane mono-oxygenase to the particulate copper-containing enzyme in M. trichosporium OB3b cells. Cu(II) is reduced in the presence of the mbs under our experimental conditions, and the disulfide plays no role in this process. The Cu(I) affinities of these molecules are extremely high with values of (6−7) × 1020 M−1 determined at pH ≥ 8.0. The affinity for Cu(I) is 1 order of magnitude lower at pH 6.0. The reduction potentials of copper-loaded FL-mb and mb-Met are 640 and 590 mV respectively, highlighting the strong preference for Cu(I) and indicating different Cu(II) affinities for the two forms. Cleavage of the disulfide bridge results in a decrease in the Cu(I) affinity to 9 × 1018 M−1 at pH 7.5. The two thiolates can also bind Cu(I), albeit with much lower affinity ( 3 × 1015 M−1 at pH 7.5). The high affinity of mbs for Cu(I) is consistent with a physiological role in copper uptake and protection.