Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Electrically initiated upstream coalescence cascade of droplets in a microfluidic flow

Zagnoni, Michele and Baroud, Charles N and Cooper, Jonathan M (2009) Electrically initiated upstream coalescence cascade of droplets in a microfluidic flow. Physical Review E, 80 (4). 046303. ISSN 1539-3755

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Two phase microfluidic systems creating size-controlled microdroplets have recently emerged as powerful tools to achieve liquid compartmentalization for high throughput chemical and biological assays. Emulsion electrocoalescence is a destabilization process that can be used in droplet-based platforms for water phase separation to enable lab-on-a-chip applications in biotechnology, including particle or cell recovery. In this paper, we report upon a series of phenomena associated with electrocoalescence of water microdroplet-in-oil populations in microfluidics. In our experiments, we formed microdroplets whose size and dispersion in the channel were varied according to the ratio of the flow rates of the two phases. Different types of electrocoalescence between droplets were obtained. For low applied voltages, drops merged in pairs over the electrode region; for higher values of the applied voltage, a cascade of droplet coalescence was produced against the flow direction, for a range of droplet sizes, lateral distributions of droplets in the channel and localized electric fields.