Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Controllability of buildings : a multi-input multi-output stability assessment method for buildings with slow acting heating systems

Counsell, John M. and Khalid, Yousaf A. and Brindley, Joseph (2011) Controllability of buildings : a multi-input multi-output stability assessment method for buildings with slow acting heating systems. Simulation Modelling Practice and Theory, 19 (4). pp. 1185-1200. ISSN 1569-190X

[img] Microsoft Word (Counsell_JM_-_strathprints_-_Controllability_of_buildings_-_A_multi-input_multi-output_stability_assessment..._heating_systems_25_Oct_2010.doc)
Counsell_JM_-_strathprints_-_Controllability_of_buildings_-_A_multi-input_multi-output_stability_assessment..._heating_systems_25_Oct_2010.doc - Preprint

Download (726kB)

Abstract

The paper describes a methodology to assess the controllability of a building and its servicing systems, such as heating, lighting and ventilation. The knowledge for these methods has been transferred from design processes and methods used in the design of aircraft flight control systems to establish a modelling and design process for assessing the controllability of buildings. The paper describes a holistic approach to the modelling of the nonlinear and linear dynamics of the integrated building and its systems. This model is used to analyse the controllability of the building using Nonlinear Inverse Dynamics controller design methods used in the aerospace and robotics industry. The results show that this design approach can help the architects in their decisions on which building design and services to use. Furthermore, the results demonstrate how the same method can assist the control systems designer in developing complex control systems especially for buildings designed with a Climate Adaptive Building (CAB) philosophy.