Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Steady-state solution of fixed-speed wind turbines following fault conditions through extrapolation to the limit cycle

Pena, Rafael and Medina, Aurelio and Anaya-Lara, Olimpo (2010) Steady-state solution of fixed-speed wind turbines following fault conditions through extrapolation to the limit cycle. IETE Journal of Research, 57 (1). pp. 12-19. ISSN 0377-2063

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A methodology to efficiently calculate the steady-state solution of fixed-speed induction generator (FSIG) based wind turbines, using a Newton algorithm and a Numerical Differentiation (ND) process for the extrapolation to the limit cycle is presented. This approach can be extremely useful in the development of steady-state studies of modern large-scale power systems with significant share of wind power based on FSIGs. A conventional Brute Force (BF) procedure is applied for comparison purposes to demonstrate the efficiency of the proposed methodology. The study involves the starting sequence of wind turbines and also the transient behavior of a single wind turbine after a disturbance. The simulations are conducted using a modeling platform developed by the authors to analyze power networks with high penetration of renewable sources.