Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Steady-state solution of fixed-speed wind turbines following fault conditions through extrapolation to the limit cycle

Pena, Rafael and Medina, Aurelio and Anaya-Lara, Olimpo (2010) Steady-state solution of fixed-speed wind turbines following fault conditions through extrapolation to the limit cycle. IETE Journal of Research, 57 (1). pp. 12-19. ISSN 0377-2063

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

A methodology to efficiently calculate the steady-state solution of fixed-speed induction generator (FSIG) based wind turbines, using a Newton algorithm and a Numerical Differentiation (ND) process for the extrapolation to the limit cycle is presented. This approach can be extremely useful in the development of steady-state studies of modern large-scale power systems with significant share of wind power based on FSIGs. A conventional Brute Force (BF) procedure is applied for comparison purposes to demonstrate the efficiency of the proposed methodology. The study involves the starting sequence of wind turbines and also the transient behavior of a single wind turbine after a disturbance. The simulations are conducted using a modeling platform developed by the authors to analyze power networks with high penetration of renewable sources.