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Abstract

In a series of papers, Bedford and Cooke used vine (or pair-copulae) as a graphical

tool for representing complex high dimensional distributions in terms of bivariate and

conditional bivariate distributions or copulae. In this paper, we show that how vines

can be used to approximate any given multivariate distribution to any required degree

of approximation. This paper is more about the approximation rather than optimal

estimation methods. To maintain uniform approximation in the class of copulae used to

build the corresponding vine we use minimum information approaches. We generalised

the results found by Bedford and Cooke that if a minimal information copula satisfies

each of the (local) constraints (on moments, rank correlation, etc.), then the resulting

joint distribution will be also minimally informative given those constraints, to all regular

vines. We then apply our results to modelling a dataset of Norwegian financial data

that was previously analysed in Aas et al. (2009).

1 Introduction

Many areas of applied operations research require us to model multiple uncertainties using
multivariate distributions. For many decision support settings it is possible to use discrete
models such as Bayesian networks. In other areas, particularly when modelling financial data,
it is necessary to have models of continuous multivariate random variables. Dependency
modelling is therefore an area of great interest for a whole range of operations research
applications.

There is a growing literature on the use of copulas to model dependencies. A copula
is a joint distribution on the unit square (or more generally on the unit n-cube). Under
reasonable conditions, we can uniquely determine a joint distribution for n random variables
by specifying the univariate distribution for each variable, and in addition, specifying the
copula. This holds because we can simply transform each variable by its own distribution
function (sometimes called its quantile function) to ensure that the transformed variable has
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a uniform distribution, so that the joint distribution function F can be written

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)), (1)

where C is a copula distribution function, and F1, . . . , Fn are the univariate, or marginal,
distribution functions. Hence we can use this formula constructively: Given a copula C and
marginals F1, . . . , Fn we can define F in this way. A special case is that of the ‘Gaussian
copula’ which is equivalent to transforming each marginal to a normal distribution and then
using a Gaussian joint distribution to model the dependency.

Clearly the use of a copula to model dependency is simply a translation of one difficult
problem into another: instead of the difficulty of specifying the full joint distribution we
have to the difficulty of specifying the copula. The main advantage is the technical one that
copulas are normalized to have support on the unit square and uniform marginals. As many
authors restrict the copulas to a particular parametric class (Gaussian, multivariate t, etc)
the potential flexibility of the copula approach is not realized in practice. The approach used
in this paper allows a lot of flexibility in copula specification. It utilizes a graphical model,
called a vine, to systematically specify how two dimensional copulas are stacked together to
produce an n-dimensional copula.

The main objective of this paper is to show that any vine structure can be used to
approximate any given multivariate copula to any required degree of approximation. The
technical assumptions we assume are that the multivariate density f under study has uni-
form marginals, is continuous and is non-zero. We illustrate this by modelling a dataset of
Norwegian financial data that was previously analysed in [12].

Our constructive approach involves the use of minimum information copulas that can be
specified to any required degree of precision based on the data available. We prove rigourously
that good approximation ‘locally’ guarantees good approximation globally. Finally, we dis-
cuss rules of thumb that could be used to apply this in practice. In particular we discuss the
problem of vine structure. A vine structure imposes no restrictions on the underlying joint
probability distribution it represents (as opposed to the situation for Bayesian networks, for
example). However this does not mean that we should ignore the question about which vine
structure is most appropriate, for some structures allow the use of less complex conditional
copulas than others. In particular, if we only allow certain families of copulas then one vine
structure might fit better than another.

2 Vine constructions for multivariate dependence

A copula is a multivariate distribution function with standard uniform marginal distribu-
tions. Using Equation 1 we see that a copula can be used, in conjuction with the marginal
distributions, to model any multivariate distribution. However, apart from the multivari-
ate Gaussian, Student, and the exchangeable multivariate Archimedean copulae, the set of
higher-dimensional copulae proposed in the literature is rather limited and are certainly not
rich enough to model all possible mutual dependencies amongst the n variates (see Kurowicka
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and Cooke, 2006 for details of these copulae). Hence it is necessary to consider more flexible
constructions.

A flexible structure, here denoted the pair-copula construction or vine allows for the free
specification of (at least) n(n− 1)/2 copulae. This structure was originally proposed by Joe
(1996), and later reformulated and discussed in detail by Bedford and Cooke (2001, 2002),
who considered simulation, information properities and the relationship to the multivariate
normal distribution. Kurowicka and Cooke (2006) consider simulation issues and Aas et
al. (2009) look at inference. Similar to the nested Archimedean constructions, the vine is
hierarchical in nature. The modelling scheme is based on a decomposition of a multivariate
density into a cascade of bivariate copulae. The way these copulae are built up to give the
overall joint distribution is determined through a structure called a vine, and can be easily
visualised. A vine on n variables is a nested set of trees, where the edges of the tree j are the
nodes of the tree j + 1; j = 1, . . . , n − 2, and each tree has the maximum number of edges.
A regular vine on n variables is a vine in which two edges in tree j are joined by an edge in
tree j + 1 only if these edges share a common node, j = 1, . . . , n− 2. There are n(n− 1)/2
edges in a regular vine on n variables. The formal definition is as follows.

Definition 1 (Vine, regular vine) V is a vine on n elements if

1. V = (T1, . . . , Tn−1).

2. T1 is a connected tree with nodes N1 = {1, . . . , n} and edges E1; for i = 2, . . . , n − 1,
Ti is a connected tree with nodes Ni = Ei−1.

V is a regular vine on n elements if additionally

3. (proximity) For i = 2, . . . , n− 1, if a and b are nodes of Ti connected by an edge in Ti,
where a = {a1, a2}, b = {b1, b2}, then exactly one of the ai equals one of the bi .

One of the simplest regular vine is shown in Figure 1. Here, T1 is the tree consisting of
the straight edges between the numbered nodes. T2 is the tree consisting of the curved edges
that join the straight edges in T1, and so on. For a regular vine each edge of T1 is labelled
by two numbers from {1, ..., n}. If we take two edges of T1 which become linked nodes in T2

then of the numbers labelling these edges one is common to both, and they both have one
unique one. For example 12 and 23 are linked at the next level tree. The common number(s)
will be called the conditioning set De for that edge e (in this example the conditioning set is
simply {2}) and the other numbers will be called the conditioned set (in this example {1, 3}).
For a regular vine the conditioned set always contains two elements.

With such a vine we associate conditional copulas to each edge, to couple the two variables
in the conditioned set given the values in the conditioning set.

Bedford and Cooke (2001) express a regular vine distribution in terms of its density in
the following theorem.

Theorem 1 Let V = (T1, . . . , Tn−1) be a regular vine on n elements. For each edge e(j, k) ∈
Ti, i = 1, . . . , n − 1 with conditioned set {j, k} and conditioning set De, let the conditional
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Figure 1: A regular vine with 4 elements

copula and copula density be Cjk|De and cjk|De respectively. Let the marginal distributions
Fi with densities fi, i = 1, . . . , n be given. Then the vine-dependent distribution is uniquely
determined and has a density given by

f(x1, . . . , xn) =
n∏

i=1

f(xi)
n−1∏

j=1

∏

e(j,k)∈Ei

cjk|De
(Fj|De

, Fk|De
) (2)

The existence of regular vine distributions is discussed in detail by Bedford and Cooke
(2002).

The density decomposition associated with 4 random variables X = (X1, . . . , X4) with
a joint density function f(x1, . . . , x4) satisfying a copula-vine structure (this structure is
called D-vine, see Kurowicka and Cooke, 2006, pp. 93) shown in Figure 1 with the marginal
densities f1, . . . , f4 is

f1234(x1, . . . , x4) =
4∏

i=1

f(xi)× c12{F (x1), F (x2)}c23{F (x2), F (x3)}c34{F (x3), F (x4)}(3)

×c13|2{F (x1 | x2), F (x3 | x2)}c24|3{F (x2 | x3), F (x4 | x3)}
×c14|23{F (x1 | x2, x3), F (x4 | x2, x3)}

This formula can be derived for this case using the general expression

f(x, y) = fX(x)fY (y)c(FX(x), FY (y)),

or equivalently
f(x|y) = fX(x)c(FX(x), FY (y)),
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where c is the copula density and FX , FY are the univariate distributions. Starting with

f1234(x1, . . . , x4) = f1(x1)f2(x2, | x1)f3(x3 | x1, x2)f4(x4 | x1, . . . , x3),

we inductively convert the latter expression into that shown in Equation 3. We have

f2|1(x2 | x1) = f2(x2)c12(F1(x1), F2(x2)).

Next,

f3|12(x3 | x1, x2) = f3|2(x3 | x2)c13|2(F1|2(x1|x2), F3|2(x3|x2))

= f3(x3)c23(F2(x2), F3(x3))c13|2(F1(x1|x2), F3(x3|x2)).

The calculation for f4|123(x4 | x1, . . . , x3) is left to the reader.
The above theorem gives us a constructive approach to build a multivariate distribution

given a vine structure: If we make choices of marginal densities and copulae then the above
formula will give us a multivariate density. Hence vines can be used to model general mul-
tivariate densities. However, in practice we have to use copulae from a convenient class,
and this class should ideally be one that allows us to approximate any given copula to an
arbitrary degree. In the following sections, we address this issue in more detail. By having
this class of copulae, we then can approximate any multivariate distribution using any vine
structure.

Unlike the situation with Bayesian networks, where not all structures can be used to
model a given distribution, the theorem shows that - in principle - any vine structure may be
used to model a given distribution. However, in practice it seems that some vine structures
do work better than others, and so this must be a result of restricting to a particular family
of copulas. That is, given a family of copulae, some vine structures may give a better degree
of approximation than others. In fact, we could say that the question “does a vine structure
fit?” only makes sense in the context of a given family of copulae.

3 Building bivariate minimum information copulae

The emphasis on this paper is on approximation rather than on optimal estimation tech-
niques. We use minimum information methods to demonstrate uniform approximation in
the class of copulae used.

This section discusses some preliminary ideas that will be needed, and in particular shows
how the approaches work to determine a unique copula when there are just two variables of
interest.

We note now though that for regular vines it is possible to compute a useful expression
for the information of a distribution in terms of the information of the copulae. The results
needed to do this are given in Bedford and Cooke (2002); Kurowicka and Cooke (2006) and
references therein. Lemma 4.4 and Theorem 4.5 in Bedford and Cooke (2002) shows that if
we take a minimal information copula satisfying each of the (local) constraints (on moments,
rank correlation, etc.), then the resulting joint distribution is also minimally informative
given those constraints. The similar expression is generalized to all regular vines.
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3.1 Data: Expert judgment or random sample driven approaches

Quantitative models are typically parametrized either by expert judgement or estimation
from data. Bedford and Cooke (2001), argue that expert judgement should be based on
observable quantities. In our context, it is the uncertain quantities such as X that are
observable. The quantile F (X) is a quantity could be argued to be an observable quantity
if the distribution function F is known. Now the use of copulas implies that we must in
fact know the marginal disributions, so this might not seem an important point. However,
experts could normally be expected to find it easier to consider the joint behaviour of the
untransformed variables X1, X2, etc, than the joint behaviour of the transformed variables
F1(X1), F2(X2). Hence when using experts to make assessments it is definitely preferable
to use assessments on the untransformed variables. However, in the context of specifying
joint distributions this causes more difficulties as there will generally be constraints. For
example when two different marginal distributions are specified for X1 X2, then the product
moment correlation might not be able to take values close to +/- 1. Fortunately, by working
with minimum information distributions we can deal with this problem to some extent. This
method allows interactive elicitation of expert opinions by giving guidance as to what values
of uncertain quantities are compatible with the assessments already made (Bedford, 2006).

By contrast, when assessing distributions on the basis of data (large quantities of which
may well be available for example in financial risk modelling problems), the data can be
transformed to uniform after estimation of the marginals. This makes it possible to consider
approximation, or encoding, of the data using a multivariate copula, and enables us to
consider ways of judging how well that approximation can be made using given families of
two-dimensional copulae. We shall consider two different approaches to do this.

3.2 The D1AD2 algorithm and minimum information copulae

Suppose there are k functions, h1, h2, . . . , hk : [0, 1]2 → R, for which we can specify the mean
values α1, . . . , αk that these functions should take. We seek a copula that has these mean
values, a problem which is usually either infeasible or underdetermined. Hence, assuming
feasibility for the moment, we ask also that the copula be minimally informative (with respect
to the uniform distribution), which guarantees a unique and reasonable solution: Define the
kernel

A(u, v) = exp(λ1h1(u, v) + . . . + λkhk(u, v)). (4)

According to the general theory of Borwein et al. (1994), Nussbaum (1989) there is a
unique copula with minimum information satisfying the constraints that the mean value of
hi is αi (i = 1, ..., k), and this has density

d(1)(u)d(2)(v)A(u, v).

The parameters (λ1, . . . , λk) depend on (α1, . . . , αk) in a nonlinear way. Fortunately there are
numerical procedures to determine this relationship: Given (λ1, . . . , λk) we can determine the
functions d(1)(u) and d(2)(v) and then calculate the associated mean values for h1, h2, . . . , hk.
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We numerically solve this function to obtain the unique (λ1, . . . , λk) for which the mean values
of h1, h2, . . . , hk are α1, . . . , αk.

The general theory says that the set of all possible expectation vectors (α1, . . . , αk) that
could be taken by (h1, h2, . . . , hk) under some probability distribution is convex, and that
for every (α1, . . . , αk) in the interior of that convex set there is a density with parameters
(λ1, . . . , λk) for which (h1, h2, . . . , hk) take these expectations.

This general approach to defining a copula was used by Bedford and Meeuwissen (1997)
with a single function h(u, v) = uv, which essentially measures the Spearman rank correlation
of the copula. Bedford (2006) and Lewandowski (2008) have considered larger groups of
functions.

The discrete version of this problem can be written in terms of matrices. Suppose that
(u, v) are discretized into n points, respectively as ui, and vj , i, j = 1, . . . , n. Then we
write A = (aij), D1 = diag(d(1)

1 , . . . , d
(1)
n ), D2 = diag(d(2)

1 , . . . , d
(2)
n ), where aij = A(ui, vj),

d
(1)
i = d1(ui), d

(2)
j = d2(vj). The assumption of uniform marginals means that

∀i = 1, . . . n
∑

j

d
(1)
i d

(2)
j aij = 1/n, and

∀j = 1, . . . n
∑
1

d
(1)
i d

(2)
j aij = 1/n.

Hence
d
(1)
i =

n
∑

j d
(2)
j aij

and d
(2)
j =

n
∑

i d
(1)
i aij

The problem of finding matrices D1 and D2 so that D1AD2 is a stochastic matrix has
been long studied. Sinkhorn and Knopp (1967) gave a simple algorthim, and the iterative
proportional fitting algorithm (Cziszar, 1975) has been much used. IPF simply uses an
iterative procedure to determine the entries of D1 and D2. The idea is very simple - start
with arbitrary positive initial matrices for D1 and D2. Then successively define new vectors
by iterating the maps

d
(1)
i 7→ n

∑
j d

(2)
j aij

(i = 1, . . . , n), d
(2)
j 7→ n

∑
i d

(1)
i aij

, (j = 1, . . . , n)

This iteration converges geometrically to give us the vectors required.
Nussbaum (1989) considered the problem in much greater generality, considering contin-

uous densities and functions, and showed that the corresponding functional is a contraction
mapping on a space of functions endowed with a Hilbert projective metric. We shall make
use of this fact when considering the quality of approximations made to copulae below.

The methods described in this section will be used in two ways. Firstly to determine
minimally informative approximations to copulae. Secondly to adjust densities that are near
to, but not actually copulae, so as to make the adjusted density a copula.
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3.3 Numerical construction of minimally informative copulae with

the D1AD2 algorithm

As discussed above, for a given set of functions (h1, . . . , hk), the mapping from the set of
vectors of λ’s parameterizing the kernel A onto the expectations of the function (α1, . . . , αk)
has to be found numerically. We employ optimization techniques for achieving the result. We
wish to determine the appropriate set of λ’s for given expectations αi, where the expectations
have been calculated using the discrete copula density D1AD2.

Define

Ll(λ1, . . . , λk) :=
1
n2

n∑

i=1

n∑

j=1

d(1)(ui)d(2)(vj)A(ui, vj)hl(ui, vj)− αl, l = 1, 2, . . . , k. (5)

We seek the roots of these functions. One of the possible solvers for this task would be
FSOLVE - MATLAB’s optimization routine. It implements various root finding techniques
allowing for choosing the one suiting our problem best. However we also obtained good
results by using another of Matlab’s optimization procedures in the example below, namely
FMINSEARCH, which implements the Nelder-Mead simplex method (Lagarias et al., 1998).
The minimized function is

Lsum(λ1, . . . , λk) =
k∑

l=1

L2
l (λ1, . . . , λk).

As an example we show how an expert could specify a copula though defining two expected
values.

Example 1 Suppose that we are given two uncertain quantities X and Y with distribution
functions FX and FY for which we want to specify a copula. Suppose that the marginal
distributions (these distributions can also be specified by an expert) are also of X and Y are
as follows

X ∼ N(0, 1), Y ∼ N(1, 4)

In addition, suppose that an expert is willing to specify the expected values of XY and X2Y ,
that is, the expected values of functions h′1(x, y) = xy, h′2(x, y) = x2y. We cannot directly ap-
ply the methods described above as these functions are given in terms of X and Y rather than
the copula variables. But, we can find corresponding functions of the copula variables U and
V , defined by hi(u, v) = h′i(F

−1
X (u), F−1

Y (v)) (i = 1, 2). The expected values of (h1, h2) under
the copula density equal the expected values of (h′1, h

′
2) under the required joint distribution.

To numerically implement the D1AD2 algorithm we discretize the copula space by fixing
a size k of the square matrix kernel A and associate points in the unit square (ui, vj) with
each element of the matrix, where ui = (i − 0.5)/k and vj = (j − 0.5)/k. We then define
Aλ = exp{λ1h1(ui, vj) + λ2h2((ui)vj)}. The D1AD2 then gives us a discrete approxima-
tion to the copula with minimum information have a certain value of E(XY ) and E(X2Y )
depending on the parameters λ1, λ2. Figure 2 shows the approximation of the copula for
λ1 = 0.069806, λ2 = −0.010728.
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Figure 2: The minimally informative copula with λ1 = 0.069806, λ2 = −0.010728.
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Figure 3: The minimally informative copula given the following constraints, E(XY ) = 1 and
E(X2Y ) = 0.8.

The functional relationship between the set of vectors of λ’s and the set of vectors or
resulting expectations of functions of (h1, h2) can be determined numerically. Given the
expectations of the functions mentioned above fixed as follows, E(XY ) = 1 and E(X2Y ) =
0.8, the optimal values for λ’s are: λ1 = 0.38893, λ2 = −0.11304. Figure 3 shows the
minimally informative (discretized) copula for these values. We also show both objective
functions, (h′1(X, Y ), h′2(X,Y )) in Figure 4 together with their counterparts in the copula
space, (h1(U, V ), h2(U, V )).

Figures 5, 6 show the expected values of h′1(X,Y ) and h′2(X, Y ) as a functions of λ1

and λ2. We may wish to specify more expectation values. Figure 7 shows the minimally
informative copula given constraints on E(XY ), E(X2Y ), E(XY 2) and E(X2Y 3) when
these expectations are fixed at (0.1528, 0.9205, 0.1661, 13.5603), respectively.
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Figure 4: Plots of base functions and the corresponding functions on the copula domain
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Figure 5: The presentation of E(XY ) as a function of λ1 and λ2
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Figure 6: The presentation of E(X2Y ) as a function of λ1 and λ2
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Figure 7: The minimally informative copula given the following constraints: E(XY ) =
0.1528, E(X2Y ) = 0.9205, E(XY 2) = 0.1661 and E(X2Y 3) = 13.5603.

4 Copula compactness

One of the main aims of this paper is to show that we can arbitrarily well approximate a
multivariate distribution by using a fixed family of bivariate copulae. A key step to demon-
strating this is to show that the family of bivariate (conditional) copula densities contained
in a given multivariate distribution forms a compact set in the space of continuous functions
on [0, 1]2. Based on this we can then show that the same finite parameter family of copulae
can be used to give a given level of approximation to all conditional copulae simultaneously.

It is worth defining more precisely the way in which we approximate densities. We assume
that all densities are continuous. Write C(Z) for the space of continuous real valued functions
on a space Z, where we shall always take Z = [0, 1]r for some r. A norm on the space C(Z)
is given by

||f1...r|| = sup |f1...r(x1, . . . , xr)|.
Since our functions are assumed continuous on Z, and since Z is compact, the norm of

any such function is finite. We shall be particularly interested in the set

C(f) = {cij|i1...ir
: 1 ≤ i, j, i1, . . . , ir ≤ n, i, j 6= i1, . . . , ir}

where cij|i1...ir
is the copula of the conditional density of Xi, Xj given Xi1 , . . . , Xir

. It will be
important to show that this set is relatively compact in the space of all continuous real valued
functions C([0, 1]2), because then we can show that the copula densities can be uniformly
approximated. We consider compactness relative to the topology induced by the sup norm.

Compactness of a set K can be defined equivalently through one of two properties, each
of which we shall use:

1. Any open cover of K has a finite subcover. In other words if K is a subset of an infinite
union of open sets, then it is in fact also a subset of a finite union of those open sets.
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2. Any sequence of points (which in our case are functions) of K has a convergent subse-
quence.

The famous Arzela-Ascoli Theorem gives another way of checking compactness when
dealing with function spaces. It says that a subset K ⊂ C([0, 1]2) is relatively compact if the
functions of K are equicontinuous and pointwise bounded. We recall that a set of functions
is equicontinuous if for all ε > 0 and (u, v) there is a δ > 0 such that if the Euclidean distance
|(u, v)− (u′, v′)| < δ then

|g(u, v)− g(u′, v′)| < ε ∀g ∈ K,

and that K is pointwise bounded if

sup{||g|| : g ∈ K} < ∞.

As a first step to showing the relative compactness of C(f) we first give our attention to
two other spaces: The set of conditional marginal densities

M(f) = {fi|i1...ir
: 1 ≤ i, i1, . . . , ir ≤ n, i 6= i1, . . . , ir},

where fi|i1...ir
is the conditional density of Xi given Xi1 , . . . , Xir , and the set of conditional

bivariate densities

B(f) = {fij|i1...ir
: 1 ≤ i, j, i1, . . . , ir ≤ n, i, j 6= i1, . . . , ir}

where fij|i1...ir
is the conditional density of Xi, Xj given Xi1 , . . . , Xir . Note that as we have

defined it, a member of M(f) is a function of one variable - in other words, all the different
marginals that we get for different conditions are individually members of M(f). Similarly
for B(f). Hence M(f) ⊂ C([0, 1]) and B(f) ⊂ C([0, 1]2).

Theorem 2 The sets M(f) ⊂ C([0, 1]) and B(f) ⊂ C([0, 1]2) are relatively compact.

Proof:
We have assumed that our multivariate density f1...n is a continuous function defined

on [0, 1]n. Since all marginal densities fi1...ir are obtained by integrating out variables from
f1...n, it is clear that

|fi1...ir (xi1 , . . . , xir )| ≤ sup |f1...n(x1, . . . , xn)|,

where the sup is taken over the variables xi (i 6= i1, . . . , ir). Hence

|fi|i1...ir
(xi|xi1 , . . . , xir

)| = |fii1...ir (xixi1 , . . . , xir )
fi1...ir (xi1 , . . . , xir

)
| ≤ ||f ||/α

where α > 0 is a lower bound on the values taken by f . This shows that there is a pointwise
bound for all the functions in M(f).
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In order to show equicontinuity we first note that each function fi1...ir is uniformly con-
tinuous. Since there are only a finite number of such functions, we can always ensure that
given ε > 0 there is a δ > 0 such that for any i1 . . . ir if

|(xi1 , . . . , xir )− (yi1 , . . . , yir )| < δ

then
|fi1...ir (xi1 , . . . , xir )− fi1...ir (yi1 , . . . , yir )| < ε.α.

Hence if |xi − yi| < δ then

|fi|i1...ir
(xi|xi1 , . . . , xir )− fi|i1...ir

(yi|xi1 , . . . , xir )| ≤

|fii1...ir (xi, xi1 , . . . , xir )− fii1...ir (yi, xi1 , . . . , xir )|/α ≤ ε

so that M(f) must also be an equicontinous family.
A similar argument shows that B(f) is an equicontinous family.
¤
We can now show

Theorem 3 The set C(f) ⊂ C([0, 1]2) is relatively compact.

Proof
For any element cij|i1...ir

of C(f), we have

cij|i1...ir
(ui, uj |xi1 . . . xir ) =

fij|i1...ir
(xi, xj |xi1 . . . xir )

fi|i1...ir
(xi|xi1 . . . xir )fj|i1...ir

(xj |xi1 . . . xir )
.

Hence if we take a sequence of elements in C(f) then there are corresponding sequences of
elements of M(f) and B(f). Since M(f) is relatively compact there must be a convergent
subsequence, and looking along that same subsequence there must be a subsequence of that
for which the corresponding functions in B(f) converge. Now, along this subsequence the right
hand side of the above expression converges, so the elements of C(f) on this same sequence
must converge (and to the same thing). In particular there is a convergent subsequence.
Hence C(f) is relatively compact.

¤
Since all the functions in C(f) are positive and uniformly bounded away from 0 it follows

that

Corollary 1 The set LNC(f) = {ln(g) : g ∈ C(f)} ⊂ C([0, 1]2) is relatively compact.

4.1 Linear bases and approximate copulae

The set C([0, 1]2) can be considered a vector space, and in this context a basis is simply
sequence of functions h1, h2, . . . ∈ C([0, 1]2) for which any function g ∈ C([0, 1]2) can be
written as g =

∑∞
i=1 λihi. There are lots of possible bases, for example

u, v, uv, u2, v2, u2vuv2, . . . .

13



Given an ordered basis h1, h2, . . . ∈ C([0, 1]2) and a required degree of approximation
ε > 0 in the sup metric, we can consider the collection of open sets

Uk,ε = {g ∈ C([0, 1]2) : inf ||g −
k∑

i=1

λihi|| < ε}

where the inf in the above definition is to be taken over all possible values of the λi. Now,
Uk,ε is clearly open and furthermore

Uk,ε ⊂ Uk+1,ε,
∞⋃

k=1

= C([0, 1]2).

So the Uk,ε form an open cover of LNC(f) and hence by definition of compactness there is
a k such that Uk,ε covers LNC(f). We can state this as a result

Theorem 4 Given ε > 0, there is a k such that any member of LNC(f) can be approximated
to within error ε > 0 by a linear combination of h1, h2, . . . , hk.

The same result holds for C(f) (though not necessarily with the same k).
Finally, we remark that though we have been looking only at approximation in the sense of

the sup norm, one could easily look at higher order approximation. For example, if we assume
that the density f1...n is continuously differentiable then all the derivatives are continuous
functions and the same arguments as used above show that they form an equicontinuous and
pointwise bounded family. Following through we find that the copulae generated from f1...n

are also continuously differentiable. By using a slightly different norm on the continuously
differentiable functions C1([0, 1]2) ⊂ C([0, 1]2),

||g||1 = ||g||+ || d

du
g||+ || d

dv
g||,

we can guarantee that a similar approximation result to the above holds with pointwise
approximation of the derivatives as well.

4.2 Ensuring that approximating densities are copula densities

Since the approximations we make of a copula density might not be quite a copula density
itself, we need to transform it to obtain a copula. This is done by weighting the density as
described above in Section 3.2. If we have a continuous positive real valued function A(u, v)
on [0, 1]2 then there are continuous positive functions d1(u) and d2(v) such that d1.d2.A is
a copula density, that is, it has uniform marginals. We call this density the C-Projection of
A and denote it C(A). It will also be convenient to denote by N(h) the normalization of a
non-negative function h with finite integral.

The next lemma allows us to control the error made when approximating a copula by
another function.

14



Lemma 1 Let g be a non-negative continuous copula density. Given ε > 0 there is a δ such
that if ||g − f || < δ then ||g − C(f)|| < ε.

Proof: We show that by taking f sufficiently close to g one can ensure that the reweight-
ing functions for f are as close to 1. This then implies that C(f) is close to g.

Without loss of generality we can assume that f is normalized. The proof uses the fact
that we can use the Borwein-Lewis-Nussbaum approach to find functions d1f (u) and d2f (v)
such that d1f .d2f .f has uniform marginals. Such functions d1g and d2g exist also for g but
are constant , d1g(u) = d2g(v) = 1. As discussed above, these reweighting functions are fixed
points of a functional that is a contraction mapping when using the Hilbert metric D on the
appropriate space of pairs of functions (d1, d2).

We denote by Lf the functional associated to f . Since this is a contraction mapping there
exists a λf ∈ (0, 1) such that

D(Lf (a, b), Lf (c, d)) < λfD((a, b), (c, d)).

If we set a0 = 1, b0 = 1 and (an+1, bn+1) = Lf (an, bn), then we have convergence to the
required pair of functions (d1f , d2f ) that reweight f to become uniform.

Now, by choosing f close enough to g we can ensure two things. First that the contraction
rate associated to Lf is close to that of Lg, in particular less than some chosen λ < 1. Second
we can ensure that

D(Lg(1, 1), Lf (1, 1)) = D(1, 1), Lf (1, 1))

is as small as required. This implies that

D((1, 1), (a, b)) ≤
∞∑

n=0

D((an, bn), (an+1, bn+1))

≤ D((a0, b0), (a1, b1))
∞∑

n=0

λn

=
D((1, 1), Lf (1, 1))

1− λ
.

Hence the reweighting functions for f are close to the identity, and so C(f) is close to g.
¤
Tim, according to Contraction Mapping Principle Theorem, if we let X =

(d1n, d2n) be the appropriate space of pairs of functions (d1, d2), and Lf (Lg) : X → X

be a contraction mapping with contractivity coefficient λf . Let x0 = (1, 1) ∈ X

and inductively define (d1(n+1), d2(n+1)) = Lf (d1(n), d2(n)), n ≥ 0. The Lf has a unique
fixed point (d1f , d2f ), the sequence (d1(n), d2(n)) converges to (d1f , d2f ) and

D((d1f , d2f ), (d1(n), d2(n))) ≤ λn
f D((d1f , d2f ), (1, 1)).

I think that proves what we have mentioned on the Lemma and is similar to your
proof. The proof of the theorem is based on showing that (d1(n), d2(n)) is a Cauchy
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sequence. We remark that the reweighting functions have the same differentiability prop-
erties as the function f being reweighted. This can be seen from the integral equation that
they satisfy:

d(1)(u) =
1∫

d(2)(v)f(u, v)dv
and d(2)(v) =

1∫
d(1)(u)f(u, v)du

.

5 Constructing approximations using minimally infor-

mative distributions

The above discussion has shown that we can approximate all conditional copulae using linear
combinations of basis functions. We did not address the question of how you choose the
appropriate parameter values, and indeed finding the parameters that would minimize the
sup norm for a given copula is not of itself an appealing procedure. A pragmatic alternative
that lies very close to the approach described above is to use the minimum information
criterion. In other words given {1, h1, . . . , hk} : [0, 1]2 → R we seek values λ1, . . . , λk so that
exp(

∑k
1 λihi) is close to the copula density we are approximating.

In the minimum information framework we do this by fitting the moments of hi. So if∫ ∫
higdudv = αi then we search for the copula density with minimum information (with

respect to the independent distribution) that also has those moments. It can be shown that
this copula density is unique and has the form

d1(u)d2(v) exp(
k∑
1

λihi(u, v)).

When we use a vine structure to model a multivariate distribution, the vine defines a
decomposition of the multivariate distribution into certain conditional copulae, associated to
the conditioned and conditioning sets of the vine. For example, if {i, j} is the conditioned set
and De is the conditioning set in one part of a vine, then the family of conditional copulae
for xi, xj given De has to be specified. Using the minimum information approach means that
we should specify mean values for the functions hr given the variables in De, that is, we have
to specify the conditional means αm(ij | De).

A multivariate distributions can be then approximated as follows:

• Specify a basis family B(k)

• Specify a vine structure

• For each part of vine, specify either

1. mean α1, . . . , αk for h1, . . . , hk on each pairwise copula;

2. functions αm(ji | De) for the mean values as functions of the conditioning vari-
ables, for m = 1, . . . , k.
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Figure 8: Selected vine structure for the Norwegian stock data set with 4 variables: Norwegian
stock index (T), MSCI world stock index (M), Norwegian bond index (B) and SSBWG hedged
bond index (S).

We illustrate the procedure by applying it to a financial data set.
Example 2 In this example, we use the same data set studied in Aas et al (2009). These

are four time series of daily data: the Norwegian stock index (TOTX), the MSCI world
stock index, the Norwegian bond index (BRIX) and the SSBWG hedged bond index, for the
period from 0.4.01.1999 to 0.8.07.2003. We denote these four variables by T, M, B and S,
respectively.

We want to generate vine approximation fitted to this data set to any given multivariate
density using minimum information distribution. We select a similar vine structure with 4
elements shown in Figure 1 for this data presented in Figure 8. It should be noticed that,
we can find the corresponding functions of the copula variables X, Y , Z and W associated
with T, M, B, S, respectively, defined by hi(X, Y ) = h′i(F

−1
1 (X), F−1

2 (Y )), etc., and clearly
these should also have the same specified expectation, that is, E(h′i(T,M)) = E(hi(X, Y )),
etc. The minimum information copulae calculated in this example are derived based on the
copula variables, X,Y, Z, W .

We first can construct a minimally informative copula between any two variables joining
together in the first tree, T1. As an example, we show the construction of a minimally
informative copula between two variables M and T denoted by CTM under the following
constraints: h′1(M,T ) = MT , h′2(M, T ) = TM2, h′3(M, T ) = T 2M and h′4(M, T ) = MT 3.
In other words, we use the Fourier copula of order 4 or a base with 4 elements to approximate
this copula. We fix the values of the expectations of these functions as follows

α1 =
1

1094

1094∑

i=1

TiMi = 0.2314, α2 =
1

1094

1094∑

i=1

TiM
2
i = 0.1497
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Figure 9: The minimally informative copula between T and M variables of Norwegian Stock
data.

α3 =
1

1094

1094∑

i=1

T 2
i Mi = 0.1465, α4 =

1
1094

1094∑

i=1

T 3
i Mi = 0.1058

The minimum information copula CTM with respect to the uniform distribution given the
four constraints mentioned above has been constructed on the same grid of 50 by 50 equally
spaced points and presented in Figure 9.

We now want to study the influence of adding more constraints on the approximation of
the copula density. As we discussed above and as expected a minimum information copula
should fit better to the data based on more constraints. We verify this point by fitting
and comparing two minimum information copulae based on 3 and 12 constraints between
variables M and B.

We first use the Fourier copula of order 12 or a base with 12 elements to approximate the
copula between variables M and B, denoted by CMB . The selected objective functions for
this base are:

h′1(M,B) = MB, h′2(M, B) = B2M, h′3(M,B) = M2B, h′4(M, B) = M3B

h′5(M, B) = M2B2, h′6(M,B) = MB3, h′7(M, B) = B2M3, h′8(M, B) = M2B3

h′9(M, B) = M3B3, h′10(M, B) = MB4 h′11(M, B) = M4B, h′12(M, B) = M5B

The minimum information copula CMB with respect to the uniform distribution given the
constraints above has been constructed on the same grid of 50 by 50 points. The constraints
presented as the expectations of the objective functions and their Lagrange multipliers re-
quired to construct the minimally informative copula between M and B are reported in Table
1.

The minimally informative copula density CMB given the constraints reported in Table
1 is presented in Figure 10.

The minimum information copula CMB with respect to the uniform distribution and given
the first three constraints reported in the first column of Table 1, that is, E[h′1(M,Z)] =
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The Constraints The constraints approximated Lagrange
based on CMB multipliers

E[h′1(M,B)] = 0.2905 0.29026 26.2459
E[h′2(M,B)] = 0.2075 0.20747 -27.4369
E[h′3(M,B)] = 0.2066 0.20683 -3.3349
E[h′4(M,B)1] = 0.1611 0.16122 -9.3389
E[h′5(M,B)] = 0.1527 0.153 -0.3289
E[h′6(M,B)] = 0.1624 0.16238 1.6079
E[h′7(M,B)] = 0.1217 0.12181 25.9629
E[h′8(M,B)] = 0.1223 0.1224 8.3688
E[h′9(M,B)] = 0.0989 0.0988 -14.0917
E[h′10(M,B)] = 0.1340 0.1338 6.5137
E[h′11(M,B)] = 0.1324 0.1323 -17.0045
E[h′12(M,B)] = 0.1126 0.11228 10.1875

Table 1: The constraints, the approximated expectations, and their Lagrange multipliers to
construct the minimal informative copula between M and B.

0.2905, E[h′2(M, Z)] = 0.2075 and E[h′3(M, Z)] = 0.2066 has been constructed on the same
grid of 50 by 50 points, presented in Figure 11. Their Lagrange multipliers are λ1 = 7.4845,
λ2 = 2.3297 and λ3 = −2.6631.

The log likelihoods of these two copulae based on 12 constraints and 3 constraints (and
constructed on 200 by 200 grid points) are respectively: logL12pt

cMB
= 92.1645 and logL3pt

cMB
=

87.1966. This is in agreement with the point made above.
The conditional copulae in the second tree, T2 can be similarly approximated based on the

minimally informative copula described above. We first construct the conditional minimum
information copula between T | M and B | M given the following constraints represented as
the conditional expectations of some objective functions:

h′1(T,B) = TB, h′2(T, B) = TB2, h′3(T, B) = T 2B

To calculate this conditional copula, we divide the support of M into some arbitrary sub-
intervals or bins (here, we use 10 bins), and we then compute the expectations of the afore-
mentioned functions on each bin as the constraints. As a result, the minimum information
copula C(T,B)|M with respect to the uniform distribution and the following constraints on
the first bin, where 0 < M < 0.1

E[h′1(T, B) | M ∈ (0, 0.1)] = 0.1594, E[h′2(T,B) | M ∈ (0, 0.1)] = 0.0678,

E[h′3(T, B) | M ∈ (0, 0.1)] = 0.1224

has been constructed on the same grid of 50 by 50 points and shown in Figure 12.
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Figure 10: The minimally informative copula between M and B variables of Norwegian Stock
data based on 12 constraints presented in the first column of Table 1.
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Figure 11: The minimally informative copula between M and B variables of Norwegian Stock
data based on the first 3 constraints presented in the first column of Table 1.
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Bin The constraints Lagrange multipliers
(E[h′1 | M ], E[h′2 | M ], E[h′3 | M ]) (λ1, λ2, λ3)

0 < M < 0.1 (0.1594, 0.0678, 0.1224) (10.9383, -8.4123, -6.9916)
0.1 < M < 0.2 (0.1785, 0.0857, 0.1252) (-4.2491, 8.1402, -5.2132)
0.2 < M < 0.3 (0.207, 0.1181, 0.1357) (2.1269,-1.7432,-1.4931)
0.3 < M < 0.4 (0.1891,0.1032,0.1171) (-7.2137,2.0704,1.9255)
0.4 < M < 0.5 (0.2587,0.1748,0.1653) (-8.7337,5.2627,3.8922)
0.5 < M < 0.6 (0.2377,0.1538,0.1526) (-12.5348,-1.6083,14.9014)
0.6 < M < 0.7 (0.2712,0.1802,0.1673) (3.9591,-7.3273,3.5925)
0.7 < M < 0.8 (0.2595,0.1736,0.1618) (7.3803,-15.482,8.9438)
0.8 < M < 0.9 (0.3156,0.2386,0.1945) (9.2597,-9.2321,-0.4385)
0.9 < M < 1 (0.2626,0.2087,0.1618) (-0.7429,-1.1895,0.6117)

Table 2: The constraints and corresponding Lagrange multipliers associated with the con-
ditional minimal informative copula between T | M ∈ (0, 1) and B | M ∈ (0, 1) for each
bin

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

1

2

3

4

X½ yÎ  (0,0.1)

Minimally informative copula given the experts’ assessments

Z½ yÎ  (0,0.1)

c X
Z

½ 
Y

Figure 12: The minimally informative copula between T | M ∈ (0, 0.1) and B | M ∈ (0, 0.1)
variables of Norwegian Stock data given E[h′1(T,B) | 0 < M < 0.1], E[h′2(T,B) | 0 < M <

0.1], E[h′3(T, B) | 0 < M < 0.1] constraints .
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Figure 13: The changes of E[h′1(T, B) | 0 < M < 1] over the bins.
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Figure 14: Box-plot demonstration of the E[h′1(T,B) | 0 < M < 1].

Table 2 shows the constraints and the corresponding Lagrange multipliers required to
build conditional minimum information copula between T | M ∈ (0, 1) and B | M ∈ (0, 1)
for 10 bins.

It is important to study the changes of the conditional expectation, E[h′1(T, B) | M ]
(E[XZ | y]) for different values of M or over the bins. Figure 13 shows this conditional
expectation, E[h′1(T, B) | M ], calculated from the minimum information copula C(T | M, B |
M) where M varies on (0, 1) along with the 95% confidence interval around the mean. As
we can observe form this figure the changes of this measure is not...

The Box-plot demonstration of this conditional expectation, E[h′1(T,B) | 0 < M < 1] is
illustrated in Figure 14. Similarly, we construct the conditional minimum information copula
between M | B and S | B given the following constraints represented as the conditional
expectations of some objective functions:

h′1(M, S) = MS, h′2(M,S) = MS2, h′3(M,S) = M2S

Table 3 shows the constraints and the corresponding Lagrange multipliers required to build
conditional minimum information copula between M | B ∈ (0, 1) and S | B ∈ (0, 1) for 10
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Bin The constraints Lagrange multipliers
(E[h′1 | B], E[h′2 | B], E[h′3 | B]) (λ1, λ2, λ3)

0 < B < 0.1 (0.1472,0.1098,0.0702) (0.4552,-0.3733,-0.4281)
0.1 < B < 0.2 (0.2105,0.1467,0.1177) (-11.3758,-5.3255,19.6037)
0.2 < B < 0.3 (0.1941,0.1274,0.1087) (-3.9076,0.3817,2.5244)
0.3 < B < 0.4 (0.2217,0.1493,0.1348) (-2.1896,-3.4284,6.6761)
0.4 < B < 0.5 (0.237,0.1502,0.1561) (-2.9583,1.0778,2.3114)
0.5 < B < 0.6 (0.2727,0.178,0.1824) (3.1245,5.2801,-6.2032)
0.6 < B < 0.7 (0.271,0.1857,0.1707) (8.0195,2.6283,-9.3362)
0.7 < B < 0.8 (0.2807,0.178,0.2) (12.1643,-3.657,-6.1391)
0.8 < B < 0.9 (0.3023,0.1929,0.2274) (-14.6401,7.9416,6.9864)
0.9 < B < 1 (0.3207,0.2056,0.2632) (-7.1654,5.4488,0.8459)

Table 3: The constraints and corresponding Lagrange multipliers associated with the con-
ditional minimal informative copula between M | B ∈ (0, 1) and S | B ∈ (0, 1) for each
bin.

bins (the bins are obtained by dividing the support of B in 10 equal length sub-interval).
Figure 15 shows this conditional expectation, E[h′1(M, S) | B], calculated from the min-

imum information copula C(M | B, S | B) where B varies on (0, 1) along with the 95%
confidence interval around the mean. As we can observe form this figure the changes of this
measure is not...

The Box-plot demonstration of this conditional expectation, E[h′1(T,B) | 0 < M < 1] is
illustrated in Figure 16.

The conditional minimally informative copula in the third tree, T3 can be similarly ob-
tained as described above. In this situation, we first divide the conditioning variables supports
into some sub-intervals, and we then construct the minimum information copula T | (M, B)
and S | (M, B) given the some constraints represented as the conditional expectations of
some objective functions where the conditioning variables varies over the specified bins. Fig-
ure 17 shows a minimally informative copula between T | {M ∈ (0.33), B ∈ (0, 0.33)} and
S | {M ∈ (0.33), B ∈ (0, 0.33)} with respect to the uniform distribution and given three
constraints e1 = E[h′1(T, S) | y ∈ {M ∈ (0.33), B ∈ (0, 0.33)}] = 0.394, e2 = E[h′2(T, S) |
{M ∈ (0.33), B ∈ (0, 0.33)}] = 0.295, e3 = E[h′3(T, S) | {M ∈ (0.33), B ∈ (0, 0.33)}] = 0.3115
which is constructed on the same grid of 50 by 50 data points. The objective functions used
as the constraints are:

h′1(T, S) = TS, h′2(T, S) = TS2, h′3(T, S) = T 2S

Table 4 shows the constraints and corresponding Lagrange multipliers which enable us to
construct the minimum information copula over the corresponding bin.

Figure 18 illustrates the changes of the conditional expectation E[h1(T, S) | 0 < M <
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Figure 15: The conditional expectation E[h′1(M, S) | 0 < B < 1] derived from the minimally
informative copula between M | B ∈ (0, 1) and S | B ∈ (0, 1) obtained above.
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Figure 16: Box-plot demonstration of E[h1(M, S) | 0 < B < 1].
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Figure 17: The minimally informative copula between T | {M ∈ (0.33), B ∈ (0, 0.33)} and
S | {M ∈ (0.33), B ∈ (0, 0.33)} variables of Norwegian Stock data given e1 = E[h′1(T, S) |
{M ∈ (0.33), B ∈ (0, 0.33)}] = 0.394, e2 = E[h′2(T, S) | {M ∈ (0.33), B ∈ (0, 0.33)}] =
0.295, e3 = E[h′3(T, S) | {M ∈ (0.33), B ∈ (0, 0.33)}] = 0.3115 constraints .

(E[h′1(T, S) | M,B] Lagrange multipliers
Bins E[h′1(T, S) | M,B], (λ1, λ2, λ3)

E[h′1(T, S) | M, B])
0 < M < 0.33, 0 < B < 0.33 (0.394,0.295,0.3115) (5.0563,0.0806,-1.1935)
0 < M < 0.33, 0.33 < B < 0.66 (0.2995,0.1975,0.2192) (5.8976,2.1862,-3.8)
0 < M < 0.33, 0.66 < B < 1 (0.2089,0.1346,0.1381) (-0.5927,5.6017,0.1003)
0.33 < M < 0.66, 0 < B < 0.33 (0.2548,0.1731,0.1541) (6.8429,2.8645,-6.5986
0.33 < M < 0.66, 0.33 < B < 0.66 (0.2459,0.1661,0.1623) (10.2143,-3.9284,-1.6448)
0.33 < M < 0.66, 0.66 < B < 1 (0.2414,0.1643,0.1657) (-5.0439,5.6452,3.3403)
0.66 < M < 1, 0 < B < 0.33 (0.2992,0.222,0.1976) (0.3324,2.6365,1.6332)
0.66 < M < 1, 0.33 < B < 0.66 (0.2766,0.1942,0.1895) (-0.0135,3.8203,-1.2379)
0.66 < M < 1, 0.66 < B < 1 (0.2163,0.1473,0.1334) (16.729,-0.3679,-12.5079)

Table 4: The constraints and corresponding Lagrange multipliers associated with the condi-
tional minimally informative copula between T | (M,B) and S | (M,B) for each bin.
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Figure 18: The conditional expectation E[h1(T, S) | 0 < M < 1, 0 < B < 1] derived from the
minimally informative copula between T | {M ∈ (0, 1), B ∈ (0, 1)} and S | {M ∈ (0, 1), B ∈
(0, 1)} obtained above.

1, 0 < B < 1] (the middle plane and recognised by “O” in the figure) and 95% confidence
bound (we use “+” to display the upperbound, and “♦” denotes the lowerbound) over the
bins specified in Table 4.

6 Conclusion

In this paper, we present a novel method to approximate a multivariate distribution by any
vine structure to any degree of approximation. Our approach uses the minimum informa-
tion copulas that can be specified to any required degree of precision based on the data
available. We prove rigourously that good approximation ‘locally’ guarantees good approx-
imation globally. This approximation allows the use of a fixed finite dimensional family of
copulas to be used in a vine construction, with the promise of a uniform level of approxima-
tion.In other words, we can use the same bases to approximate each copula in each tree of
the corresponding vine.

However, a vine structure imposes no restrictions on the underlying joint probability
distribution it represents, but this is crucial to investigate which vine structure is most
appropriate. The choice of vine structure becomes more significant when we truncate class
of copulae to make search strategy simpler. Therefore, the approximation of a multivariate
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distribution using a vine structure for a given multivariate copula depends on the bases
represent the truncated class of copula and approximate level ε. This approximation can be
made more accurate by adding more bases to achieve the desired level of approximation ε.

We wish to extend our method by using a series expansion, like a two-dimensional Fourier
series or generalized Fourier series, to approximate any log-density function by truncating
the series at an appropriate point.

We are also considering the possibility of extending this work by using the emulators to
estimate the expensive bases and therefore to approximate the resulting couples and vine.
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