Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Model-based estimation and filtering for condition monitoring of AGR nuclear graphite cores

Yang, Erfu and Grimble, M.J. and West, G.M. and Inzerillo, Santo and Katebi, M.R. and McArthur, S.D.J. (2010) Model-based estimation and filtering for condition monitoring of AGR nuclear graphite cores. In: UKACC International Conference on CONTROL 2010, 2010-09-07 - 2010-09-10.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The graphite core is the critical component which dictates the life-time of an AGR (Advanced Gas-cooled Reactor) in a nuclear power station. To ensure the continued safe operation of an AGR nuclear plant, it is vital to closely monitor the condition of its graphite core to maintain its integrity for the economic life of the reactor. This paper presents a novel analytical approach for model-based condition monitoring of the AGR nuclear graphite core. By using a new first principles model for the refueling process, the friction forces can be estimated. In addition the aerodynamic-related forces for the whole core region can be separated from the masked FGLT (fuel grab load trace) data gathered during the charge and discharge refueling stages. The estimated friction and aerodynamic forces can be filtered further to remove any potential noise by using a three stage filtering procedure. As a result, the filtered FGLT data can be obtained by reconstructing the filtered friction and aerodynamic forces. To demonstrate the effectiveness the proposed analytical approach, an actual case from an AGR power plant is studied.