Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

The past and future of enzyme measurements using surface enhanced Raman spectroscopy

Larmour, Iain A. and Faulds, Karen and Graham, Duncan (2010) The past and future of enzyme measurements using surface enhanced Raman spectroscopy. Chemical Science, 1 (2). pp. 151-160. ISSN 2041-6520

[img]
Preview
Text (Larmour-etal-CS-2010-The-past-and-future-of-enzyme-measurements-using-surface)
Larmour_etal_CS_2010_The_past_and_future_of_enzyme_measurements_using_surface.pdf
Accepted Author Manuscript

Download (1MB)| Preview

    Abstract

    The ability to accurately and sensitively measure the activity of specific enzymes is central to many aspects of modern chemistry and when combined with new nanoscience based approaches, offers significant opportunities for advancing other scientific disciplines. We review the development of surface enhanced resonance Raman scattering (SERRS) for the detection of enzymes, from the initial direct spectroscopy of enzymes, substrate/product and inhibitors adsorbed onto metallic colloids, to the current approach of measuring enzymatic activity by recording the SERRS spectra of a product which is only 'switched on' after enzyme activity. Developments focussed on improvements to modular masked SERRS substrates, which are unmasked by specific enzymes, are also reviewed. Finally, we set out the remaining grand challenges within the area of enzymatic analysis by SERRS which include single molecule detection, in vivo studies and increased multiplexing for screening of evolved enzyme libraries.