
This version is available at https://strathprints.strath.ac.uk/27856/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
ABSTRACT

Synthesis methods used to produce poly(2-methoxyaniline-5-sulfonic acid) (PMAS), a water soluble, self-doped conducting polymer, have been shown to form two distinctly different polymer fractions with molecular weights of approximately 2 kDa and 8 –10 kDa. The low molecular weight (LMWT) PMAS fraction is redox inactive and non-conducting while the high molecular weight (HMWT) PMAS is electro-active with electrical conductivities of 0.94 ±0.05 S cm⁻¹. Previous investigations have illustrated the different photochemical and electrochemical properties of these fractions, but have not correlated these properties with the structural and electronic interactions that drive them. Incomplete purification of the PMAS mixture, typically via bag dialysis, has been shown to result in a mixture of approximately 50:50 HMWT:LMWT PMAS with electrical conductivity significantly lower at approximately 0.10 to 0.26 S cm⁻¹. The difference between the electrical conductivities of these fractions has been investigated by the controlled addition of the non-conducting LMWT PMAS fraction into the HMWT PMAS composite film with the subsequent electronic properties investigated by solid-state ESR and Raman spectroscopies. These studies illustrate strong electronic interactions of the insulating LMWT PMAS with the emeraldine salt HMWT PMAS to substantially alter the population of the electronic charge carriers in the conducting polymer. ESR studies on these mixtures, when compared to HMWT PMAS, exhibited a lower level of electron spin in the presence of LMWT PMAS indicative of the the formation of low spin bipolararons without a change the oxidation state of the conducting HMWT fraction.