
This version is available at https://strathprints.strath.ac.uk/27765/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Intelligent pigs and plastics for CO$_2$ detection

Andrew Mills,* Graham A. Skinner and Pauline Grosshans

Received 2nd March 2010, Accepted 30th April 2010
First published as an Advance Article on the web 24th May 2010
DOI: 10.1039/c0jm00582g

A novel CO$_2$ intelligent pigment is incorporated into a thermoplastic polymer to create a long-lived CO$_2$-sensitive plastic film which is characterised and then compared to a traditional solvent-based CO$_2$ indicator film.

A number of optical indicators have been developed in recent years to detect the presence of CO$_2$ at different levels, depending on the desired application. The majority of CO$_2$ indicators work via the change in pH which occurs when CO$_2$ dissolves in water. A pH-sensitive dye, D, changes colour when it reacts with the protons generated from the dissolution of CO$_2$ in water, i.e.,

$$\text{D}^{-} \text{(colour A)} + \text{H}^{+} \leftrightarrow \text{HD} \text{(colour B)} \quad (1)$$

where A is the colour of the dye (in its anionic, deprotonated form) before exposure to CO$_2$ and B is the colour of the dye (in its protonated form) after exposure to CO$_2$. Thus, upon exposure of such indicators to CO$_2$, the pH of the ambient environment decreases sufficiently to protonate the dye and so causes a measurable and observable change in absorbance of the indicator. The widespread detection of CO$_2$ by most thin-film, optical indicators has been hindered by their interaction with ambient acidic gas species (such as SO$_2$ and NO$_2$), which irreversibly acidify and markedly reduce the shelf-life of the indicator. This paper identifies a route for producing CO$_2$ indicators with increased shelf-life stability, through the incorporation of a fast-acting, reversible, stable (>6 months) CO$_2$-indicating pigment into a flexible, extrudable, thermoplastic polymer.

To 2.0 g of hydrophobic silica (Degussa/Evonik Aerosil R812, specific surface area = 260 ± 30 m2 g$^{-1}$, average particle size = 7 nm), 0.08 g of m-cresol purple (MCP), 100 ml of ethyl acetate and 1.5 ml of 1 M tetrabutylammonium hydroxide were added. The silica employed has been rendered hydrophobic, by the manufacturer, by reacting the surface hydrophilic silanol groups (Si-OH) with dimethyldichlorosilane to produce hydrophobic Si-Me groups. This mixture was stirred further until fully dissolved. This solution was heat pressed using a Specac Atlas Series Heated Platens at 115 °C to create a blue polyethylene film (0.1 mm thick) which was used in subsequent indicator work. The composition of the final CO$_2$-sensitive intelligent plastic, in terms of parts per hundred resin (pphr), was PE/MCP/SiO$_2$/TBAH = 100/0.6/15/2.9.

For comparison purposes, a similar solvent-based ink was prepared by dissolving 0.08 g of m-cresol purple in 3 ml methanol and 1.5 ml of 1 M tetrabutylammonium hydroxide (TBAH) in methanol. This solution was stirred for 15 minutes, placed in a sonication bath for 10 minutes, then stirred further until fully dissolved. This solution was added to 20 g of 10% w/w ethyl cellulose in toluene/ethanol (80:20), along with 2 ml of tributyl phosphate. The final ink solution

Fig. 1 Colour change of CO$_2$-sensing pigment exposed to 100% CO$_2$.

$$\text{Q}^{+}\text{MCP}^{-}\cdot x\text{H}_2\text{O}\text{+ CO}_2 \leftrightarrow \text{Q}^{+}\text{HCO}_3^{-}\cdot (1-x)\text{H}_2\text{O}\cdot \text{MCPH} \quad (2)$$

This same key reaction features in MCP, solvent-based CO$_2$-sensitive plastic films. Thus, as illustrated by the photographs in Fig. 1, in the absence of CO$_2$ the MCP is in its blue anionic (MCP$^-$) state, but in the presence of CO$_2$ it is converted, via the reversible reaction (2), to its yellow, protonated form (MCPH).

The resulting CO$_2$-sensitive pigment is fast-acting (<1 s), reversible and very stable (>6 months), when stored in a darkened bottle under air.

In order to make the corresponding intelligent plastic CO$_2$ indicator, 0.6 g of the hydrophobic pigment was added to 4.0 g of powdered polyethylene (Alfa Aesar, LDPE, 1000 μm) and the mixture ground up using a mortar and pestle until the colour was a uniform blue. A small sample (ca. 0.3–0.4 g) of the powder mixture was heat pressed using a Specac Atlas Series Heated Platens at 115 °C to create a blue polyethylene film (0.1 mm thick) which was used in subsequent indicator work. The composition of the final CO$_2$-sensitive intelligent plastic, in terms of parts per hundred resin (pphr), was PE/MCP/SiO$_2$/TBAH = 100/0.6/15/2.9.
was stirred for at least 30 minutes. The composition of the deposited dried ink film, 0.8 \mu m thick, in terms of phr, was EC/MCP/TBAH/
tributyl phosphate = 100/4/19.5/97.

The MCP/silica pigment in polyethylene plastic film is initially blue
coloured but, as with the bare pigment (see Fig. 1), it changes to
yellow upon exposure to carbon dioxide gas, as illustrated in Fig. 2.
This characteristic, blue to yellow, colour change was also observed
for the MCP solvent-based ink, which uses the same quaternary base.

Fig. 3 shows the recorded UV-visible spectra of the MCP/silica
pigment plastic film as a function of %CO₂. As with its solvent-based
film counterpart, the change in colour, due to λ_{max} shifting from
592 to 424 nm, is a result of the MCP⁻ forming MCPH via reaction
(2). The variation in the absorbance due to the MCP in the plastic
film as a function of %CO₂ is illustrated in Fig. 4.

It is useful to define the parameter, R, which is directly propor-
tional to the ratio of concentrations [MCPH]/[MCP⁻], via Beer’s law,
through the expression:

\[R = \frac{\text{Abs}_0 - \text{Abs}}{(\text{Abs} - \text{Abs}_\infty)} = \frac{[\text{MCPH}]}{[\text{MCP}^-]} \]

(3)

where Abs₀ is the value of absorbance of the dye at λ_{max} (MCP⁻)
when %CO₂ = 0 (i.e. when the dye is fully in its deprotonated form)
and Abs_\infty is the absorbance of the film when all the dye has been
converted into its protonated form i.e. when %CO₂ = \infty. Since
MCPH does not absorb at λ_{max} (MCP⁻), it is convenient to estimate
Abs_\infty at 592 nm. For such indicators it can be shown¹ that:

\[R = \frac{[\text{MCPH}]}{[\text{MCP}^-]} = \alpha \%\text{CO}_2 \]

(4)

and the linear relationship between R and %CO₂, as illustrated in the
inset diagram in Fig. 4, reveals an \alpha value of 0.185 ± 0.02%CO₂⁻¹.
A similar experiment carried out on the solvent-based CO₂-indicator
reveals an \alpha value of 0.80 ± 0.08%CO₂⁻¹. Since \alpha is a measure of
indicator sensitivity, it appears that the solvent-based sensor shows
a greater sensitivity (4 times) towards CO₂ compared to the
MCP/silica pigment plastic indicator, possibly in part due to the
greater permeability of CO₂ (by a factor of ca. 9) in ethyl cellulose
compared to polyethylene.⁸ Although the two indicator systems
tested have markedly different dye levels (dye) = ca. 7 times more—
in terms of phr in the solvent based indicator), this is unlikely to be
responsible for the difference in sensitivity for two reasons. Firstly,
the sensitivity of such indicators is expected⁶ to be independent of dye
concentration, except at very high dye levels. Secondly, at high dye
concentrations the dye will buffer the system and so the indicator
would appear less sensitive (not more, as found for the higher dye-
containing solvent-based indicator).

The MCP/silica pigment plastic indicator is fully reversible and
responds quickly (within a few minutes) when exposed to 100% CO₂,
but has a slow recovery time (ca. 2 hours to fully recover). In contrast
the solvent-based CO₂-indicator has response and recovery times of
both <1 and 3 s respectively. The above differences between the two
indicators are due to the diffusion dependence of indicator film
response and recovery times which, as a consequence, will depend
upon film thickness and CO₂ permeability. Thus, the much slower
recovery time of the polyethylene indicator will be due to its greater
film thickness (100 compared to 0.8 \mu m) and lower CO₂ permeability
(different by a factor of ca. 9). Both CO₂-indicators can be used
repeatedly without any loss in performance.

As noted earlier, it is known¹¹,²⁰ that most solvent-based
CO₂-sensitive inks suffer irreversible acidification from interfering
acidic gases, such as NO₂ and SO₂. Indeed, all optical CO₂ indicators
that operate via a pH changing dye are non-selective with regard to
other acidic gases and the indicators reported in this paper are no
different. This is a particular problem when it comes to film storage
since NO₂ and SO₂ are typically present in an urban environment at
levels of 150 and 50 ppb, respectively.²⁰ And so it is an important
feature of the MCP/silica pigment plastic CO₂-indicator films that
they have a much greater longevity compared to that of a conven-
tional solvent-based ink. For example, in our hands a solvent-based,
indicator film will typically begin to acidify irreversibly, under
ambient conditions within 1 week and be completely unusable within
5 weeks, when stored in a sealed container under ambient conditions.
In contrast, the pigment/polymer composite film shows no visual sign
of acidification after months of storage under the same sealed
ambient, dark, conditions and works as if new. This is a significant
advantage of the MCP/silica pigment plastic film indicators. Others¹⁰
have shown the tolerance level of solvent based indicators for these
acidic gases is only ca. 5 ppm. Interestingly, other work shows that
the MCP/silica pigments have much higher tolerances (300 and
30 ppm for NO₂ and SO₂ respectively), which helps explain their
greater longevity when stored under ambient air.
MCP/silica pigment plastic films over the range 20–40 °C show a decrease in sensitivity (ca. 0.06% per °C) with increasing temperature, similar to that of the solvent-based indicator (ca. 7% per °C). This decrease is not unexpected given the nature of the key reaction (2).

It was also found that the MCP/silica pigment plastic indicator shows little or no sensitivity towards relative humidity, presumably due to the extremely hydrophobic nature of the indicator. In contrast, the MCP solvent-based indicator, whilst showing little or no sensitivity over a wide humidity range (typically 20–70%RH), does exhibit a slight decrease in sensitivity for %RH higher than 70%RH. Similar results have been found by others studying other CO₂-sensitive, solvent-based indicators.

Fast-acting, reversible and stable, intelligent CO₂-sensitive pigments incorporated into thermoplastics, such as polyethylene, are easy and cheap to prepare. The resulting plastic films exhibit excellent reversibility, a striking colour change and a markedly longer shelf-life than similar, solvent-based CO₂-sensitive inks. As a consequence they have great potential for use in a wide range of applications—including food packaging.11

Notes and references