
This version is available at https://strathprints.strath.ac.uk/27696/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
Synergic Transformation of an Ethylenediamine to a Lithium 1, 3-Diaza-2-zincacyclopentene via an Alkyllithium/Bis(alkyl)zinc Mixture

Ross Campbell, Pablo García-Álvarez,* Alan R. Kennedy, and Robert E. Mulvey*[a]

Alkali metal zinicates are among an increasing number of mixed-metal organoreagents that are attracting widespread attention because of their ability to exhibit synergic reactivity. Such special behaviour can be defined as reactions arising from the cooperative effects of the two distinct metals, the hard alkali metal and soft zinc, within the multicomponent zinate that cannot be reproduced by either single alkali metal or zinc component on its own. This synergism has been particularly prominent in metalation (metal-hydrogen exchange) applications.[1] Alkylzinc (R₂Zn) or amidozinc [RZn(NR')₂] reagents are generally notoriously poor kinetic bases incapable of directly metalating (zincating) aromatic substrates to any synthetically useful extent, but combined with an alkali metal compound[2] or related component[3] they can transform into highly reactive “zincators”. Kondo and Uchiyama’s “LiZn(TMP)”zincators” and our own [(TMEDA)Na(TMP)] and Mongin’s “LiZn(TMP)” whose synergic chemistry which leads to a dianionic unsaturated diazadienine.

To gauge whether a bimetallic mixture exhibits synergic activity, its separated monometallic components should be reacted with the substrate in control reactions. As expected, we found that tBu₂Zn is too weak a base to deprotonate 1, 3-diaza-2-dimethylaminoethene A. Reaction conditions: (a) hexane at 65 °C 1 h; (b) hexane at 65 °C 24 h; (c) hexane at 65 °C 10 min; and (c) hexane at 65 °C 2 h.

[a] R. Campbell, Dr P. García-Álvarez, Dr A. R. Kennedy, Prof R. E. Mulvey WestCHEM, Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XJ (UK) Fax: (+)44 141-548 4822 E-mail: r.e.mulvey@strath.ac.uk

Supporting information for this article is available on the WWW under http://www.chemeurj.org/ or from the author.

Scheme 1. Comparison of non-cooperative reactions [tBuLi, (a) or tBu₂Zn, (b)] and cooperative reactions [tBuLi and tBu₂Zn, (c)] of metal alkyls with an ethylenediamine A. Reaction conditions: (a) hexane at 25 °C 1 h; (b) hexane at 25 °C 24 h and at 69 °C 10 min; and (c) hexane at 69 °C 2 h.
molar equivalent) would produce a co-complex of composition \([\text{Bu}_2\text{Zn}:\text{Li}^+\text{TMEDA}\text{CH}_2\text{CH}_2\text{NH}_2(\text{H})(\text{Pr})]^-\) \(3\). Kinetically it does and we obtained the crystal structure of \(3\) (Figure 1). However, thermodynamically, this reaction mixture in hexane solution surprisingly affords the crystalline product \((\text{TMEDA})\text{Li}^+(\text{PrNCHCHNPr})\text{Zn}(\text{Bu})\) \(4\). As depicted in Scheme 1, formation of this lithium \(1,3\)-diaza-2-zincacyclopentene formally requires the loss of two protons and hydrogen gas to transform the neutral saturated ethylenediamine to a dianionic unsaturated variant. To check whether this transformation was the result of employing two or more of the metal reagent and/or adding TMEDA, a 3:1:0 and 3:1:3 mixture of \(n\text{BuLi}, \text{diamine}, \text{and TMEDA}\), in the absence of \(\text{Bu}_2\text{Zn}\), was evaluated but NMR spectroscopic studies confirmed only synthetically insignificant trace amounts of a diazaethene product with the major product being an ethylenediamine complex in which the -NCH \(_2\)CHN- bridge is retained.\(^5\) On this evidence, the double (sp\(^2\)) C-H bond activation and concomitant C=C formation involved in the making of the metallo cycloalkene \(4\) can be attributed at least in part to a special bimetallocyclentic synergic effect under the particular conditions studied, though other factors such as changing concentration may also be important as C=C bond formation has been observed to occur in concentrated monometallic systems (see below).

Figure 1. Molecular structure of \(3\) with hydrogen atoms (except N-H) omitted for clarity. Selected bond lengths [Å] and angles [°]: Zn(1)-C(11) 2.073(2), Zn(1)-C(15) 2.068(2), Zn(1)-N(1) 2.326(1), Zn(1)-N(2) 2.127(1), Li(1)-N(2) 1.993(3), Li(1)-N(3) 2.143(3), Li(1)-N(4) 2.173(3), N(1)-C(12) 1.470(2), N(2)-C(13) 1.461(2), C(12)-C(13) 1.517(2), C(5)-Zn(1)-C(1) 125.5(5), C(5)-Zn(1)-N(2) 111.49(6), C(5)-Zn(1)-N(3) 111.49(5), C(1)-Zn(1)-N(1) 102.67(6), N(2)-Zn(1)-N(3) 83.10(5), N(2)-Li(1)-N(3) 127.12(15), N(2)-Li(1)-N(4) 141.1(2), N(3)-Li(1)-N(4) 87.1(1).

Determined by X-ray crystallography, the molecular structures of \(3\) (Figure 1) and \(4\) can be classed as contact ion pair zinicates comprising a TMEDA-chelated lithium cation and an alkyl(diadamido) zinc anion. Within \(3\) distorted tetrahedral Zn(1) completes a highly puckered C\(_{2}\)N\(_{2}\)Zn metalacyclic ring [see for instance torsion, Zn1–N2–C13–C12 = \(-48.82\) (17)°] with an N–Zn–N bite angle of 83.10(5)° with exo \(\text{Bu}\) substituents on Zn and \(\text{Pr}\) substituents on N1 and N2 respectively. The \(\text{Pr}\) groups both occupy equatorial sites and lie anti to each other across the 5-atom ring which exhibits an ethylene C(12)–C(13) bond length of 1.517(2) Å consistent with a single bond. Trigonal planar Li(1) has N3 coordination comprising one diamine atom and two N atoms of TMEDA with the formal anionic Li–N(2) bond [1.993(3) Å] being shorter than the latter dative Li–N bonds (mean length, 2.158 Å). Though the connectivity within \(4\) can be crystallographically determined, generic双赢的 the samples adversely affected all modelling attempts and rules out discussion of its bonding dimensions. However, using an identical procedure to that for \(4\), we synthesized and crystallographically characterized the isostructural methyl homolog \([\text{TMEDA})(\text{Li}^+(\text{PrNCHCHNPr})\text{Zn}(\text{Me})]\) \(5\), the crystal data for which are more accurate allowing such a discussion. In the molecular structure of \(5\) (Figure 2) the anionic moiety shows N,\(^+\)-chelation by the N=C=C=N unit to zinc [bite angle, 83.98(9)°] to build a 5-atom metalacycle with exo \(\text{Pr}\) and Me substituents on N and Zn atoms respectively. Distorted trigonal planar zinc deviates modestly from the C\(_{2}\)N\(_{2}\) plane, bonding symmetrically to the N atoms [lengths, 1.966(2) and 1.964(2) Å; Zn 0.459(3) Å out of plane]. In a typical range for sp\(^2\)-sp\(^2\)-C=C bonds, the C(5)-(C)-(6) bond length is 1.349(3)Å. The Li+ ion of the cationic moiety π-bonds (η\(^2\)) asymmetrically to the N=C=C=N unit, closer to one end [Li(1)-N(1), 2.165(4)Å; Li(1)-C(5), 2.235(4)Å] than the other [Li(1)-N(2), 2.301(4)Å; Li(1)-C(6), 2.286(4)Å]. This asymmetry continues with Li anti to Zn, with respect to the C\(_{2}\)N\(_{2}\) plane, and separated from it by 2.688(4) Å. Though new for Li:Zn combinations, the alkali metal face-capped 1,3-diaza-2-metallocyclopentene motif of \(4\) and \(5\) is known for other combinations including for example Na:Zn,\(^9\) K:Zn,\(^7\) K:Me,\(^10\) Li:Ga,\(^9\) or K:Ga.\(^10\) Most of these structural precedents originate from elemental alkali metal reduction of 1,4-diaza-1,3-butadienes or related unsaturated molecules which sets them synthetically apart from \(4\) and \(5\) as to the best of our knowledge these two Li:Zn examples represent the first to be synthesized from a completely non-activated aliphatic diamine.

Figure 2. Molecular structure of \(5\) with hydrogen atoms omitted for clarity. Selected bond lengths [Å] and angles [°]: Zn(1)-C(11) 1.956(3), Zn(1)-N(1) 1.966(2), Zn(1)-N(2) 1.964(2), Zn(1)-Li(1) 2.688(4), Li(1)-N(1) 1.216(4), Li(1)-N(2) 2.301(4), Li(1)-N(3) 2.145(4), Li(1)-N(4) 2.301(4), Li(1)-C(5) 2.235(4), Li(1)-C(6) 2.286(4), N(1)-C(5) 1.398(3), N(2)-C(6) 1.402(3), C(5)-C(6) 1.349(3), N(1)-C(15) 1.398(3), C(1)-Zn(1)-N(1) 136.6(1), C(1)-Zn(1)-N(2) 138.69(9), N(2)-Zn(1)-N(3) 83.98(9), N(2)-Li(1)-N(3) 112.5(2), N(4)-Li(1)-N(1) 86.51(16), N(4)-Li(1)-N(2) 126.8(2), N(3)-Li(1)-N(1) 124.6(2), N(4)-Li(1)-N(2) 139.9(2), N(1)-Li(1)-N(2) 72.1(1).
The closest synthetic analogy to the reaction producing 4 and 5 is Veith’s report[11a] of the 1,3-diaza-2-silacyclopentene \textit{6a} as it involves dilithiation of \(\text{BuN(H)}\text{CH}_2\text{CH}_2\text{NiH}_2\text{Bu} \) (Scheme 2). Distinct from our method, the anticipated diadicn diamide was not isolated but trapped in situ with a dichlorosilane to generate the neutral, as opposed to our anionic, heterocyclopentene. Oddly, \textit{6a} formed only in highly concentrated solutions[11a] whereas dilute solutions[11b] more akin to that employed in our study gave an alternative heterocyclopentane product \textit{6b}. Veith conceded that the reason for the double hydrogen abstraction from the ethylene backbone in forming \textit{6a} was unclear. In theory 4 and 5 having potentially labile metal centers primed for participation in salt metathesis reactions could be regarded as intermediates in conversions of this type.

A repeat reaction of \(\text{RBu}_2\text{Zn}, \text{nBuLi, and the dianmine in the additional presence of the bulky ketone (R}\text{Bu}_2\text{C}=\text{O} \) (Scheme 3) may have provided an initial clue to the mechanism behind the formation of 4. An NMR analysis of the crude reaction revealed a complicated mixture of products[5] among which, significantly, 4 and the lithium alkoxide \([([R\text{Bu}_2\text{C(H)OLi}])_4]_7\), 7, were clearly identified. The existence of 7, the result of a hydride addition to the electrophilic \(C=O \) of the ketone, hints at the possible role of the lithium-zinc co-operativity.

During crystallisation of \(\text{Zn} \) \(\text{Bu}_2 \text{Zn} \) resulted unsuccessful due to its high thermal instability.

![Scheme 3. Reaction of \(\text{PhN(H)}\text{CH}_2\text{CH}_2\text{NiH}_2\text{Pr} \) with a \(\text{nBuLi/RZn/TMEDA} \) synergetic mixture to form 4 or 5 via a putative intermediate hydride which can also be trapped with a ketone to generate a lithium alkoxide.](image)

Experimental Section

General methods: All reactions and manipulations were carried out in an atmosphere of dry pure argon gas using standard Schlenk and glovebox techniques.

Synthesis of 1: A Schlenk tube was charged with 4 mmol (0.72 g) of \(\text{Zn} \) \(\text{Bu}_2 \) which was dissolved in 20 mL of hexane and one equivalent of \(\text{PhN(H)}\text{CH}_2\text{CH}_2\text{NiH}_2\text{Pr} \) (4 mmol, 0.72 mL) was added via syringe. The result was colourless and stirred overnight at RT and reflux at a reduced temperature for 10 min. To aid crystallisation the solution was concentrated under reduced pressure to a final volume of 2-3 mL and, after standing overnight at \(-27^\circ \text{C}\), colourless crystals of 1 (suitable for X-ray crystallographic analysis) were obtained (0.20 g, 15 %).

Crystallisation of 3: 1.25 mL (2 mmol) \textit{nBuLi} was added dropwise to a solution of 0.36 mmol (2 mmol) \textit{DPEA}(H)\textit{H} in 10 mL hexane at 0 °C. This temperature was maintained as 0.3 mL (2 mmol) \textit{TMEDA} and a solution of 0.36 g (2 mmol) \textit{R}Bu\textit{Zn} in 10 mL hexane were added giving a pale yellow solution with some white solid. This solution was stored immediately at \(-27^\circ \text{C}\) giving a crop of colourless crystals suitable for \(X\text{-ray crystallographic analysis corresponding to complex 3.}\)

Noting that the \(\text{N=CH}=\text{CH}=\text{N} \) to \(\text{N-CH=CH-N} \) transformation outlined here for certain will not involve redox processes like that reported by Brookhart[10] for late transition metal catalysed intramolecular dehydrogenations, in future work we plan to carry out a comprehensive computational study to elucidate the mechanism of this transformation with emphasis on the precise role of the lithium-zinc co-operativity.

Scheme 2. Veith’s reaction of \(\text{BuN(H)}\text{CH}_2\text{CH}_2\text{NiH}_2\text{Bu} \) with \textit{nBuLi} and further trapping with a dichlorosilane.

Scheme 1. Veith’s reaction of \(\text{BuN(H)}\text{CH}_2\text{CH}_2\text{NiH}_2\text{Bu} \) with \textit{nBuLi} and further trapping with a dichlorosilane.
This solution was refluxed for 2 hours producing a bright orange solution. Storing the solution at ~70 °C gave a crop of yellow crystals of 4 which were isolated in a 38.9 % (0.30g) crystalline yield. 1H NMR (400.13 MHz, CD3OD, 300 K): δ(ppm) = 5.83 (s, 2 H, C2), 1.32 (d, J = 6.3 Hz, 6 H, CH3), 1.60 (s, 9 H, C6Bu), 1.58 (s, 4 H, C2H2), 1.40 (d, J = 6.3 Hz, 6 H, CH3), 3.48 (m, 2 H, CH2), 2.86 (s, 6 H, C6BuH), 28.6 (s, 6 H, C6Bu), 45.6 (s, 4 H, C2H2). \[Li (155.50 MHz, CD3OD, 300 K): δ(ppm) = −2.40.\]

Acknowledgements

We gratefully acknowledge the generous support of the UK EPSRC (grant award no. EP/F063733/1) and the Royal Society/Wolfson Foundation (research merit award to R.E.M.). We also thank our colleague Dr Eva Hevia for many enlightening discussions. This research was also sponsored by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme (for P.G.-A.).

Keywords: amines · diamines · hydride · lithium · metallacycle · synergy · zinc

Entry for the Table of Contents (Please choose one layout only)

Layout 1:

Metal-Mediated Synthesis

Ross Campbell, Pablo García-Alvarez,* Alan R. Kennedy, and Robert E. Mulvey* ………………

Page – Page

Synergic Transformation of an Ethylenediamine to a Lithium 1, 3-Diaza-2-zincacyclopentene via an Alkyl lithium/Bis(alkyl)zinc Mixture

Deadly Duo: Four bonds in total, two N-H and two C-H bonds have been cleaved from a neutral secondary diamine through the cooperative effects of a lithium alkyl-zinc bisalkyl coalition aided by TMEDA to generate a dianionic diazaethene.
Synergic Transformation of an Ethylenediamine to a Lithium 1, 3-Diaza-2-zincacyclopentene via an Alkyl lithium/Bis(alkyl)zinc Mixture

Ross Campbell, Pablo García-Álvarez,* Alan R. Kennedy, and Robert E. Mulvey*^[a]

Alkali metal zinates are among an increasing number of mixed-metal organoreagents that are attracting widespread attention because of their ability to exhibit synergic reactivity. Such special behaviour can be defined as reactions arising from the cooperative effects of the two distinct metals, the hard alkali metal and soft zinc, within the multicomponent zinate that cannot be reproduced by either single alkali metal or zinc component on its own. This synergism has been particularly prominent in metal-hydrogen exchange applications.[1] Alkylzinc (R₂Zn) or amidozinc [RZn(NR’₂)]Zn(NR’₂)] reagents are generally notoriously poor kinetic bases incapable of directly metalating (zincating) aromatic substrates to any synthetically useful extent, but combined with an alkali metal compound[2] or related component[3] they can transform into highly reactive “zinators”. Kondo and Uchiyama’s “LiZn(TMP)|Bu” ([TMP = 2,2,6,6-tetramethylpiperidide], Mongin’s “LiZn(TMP)”,[2a,b] and our own [(TMEDA)Na(TMP]|(Bu)Zn((Bu)]^+ [TMEDA = N,N,N’,N’,N'-tetramethylethylenediamine) belong in this category and although fundamental differences exist between these powerful amide-based zinators, their Zn–H exchange reactions can be grouped together as alkali-metal-mediated zinicates “AMMZn’s”.[3] Exampled by TMP, the amide components involved in AMMZn chemistry are invariably monoaionic ligands derived from secondary amines containing one acidic N–H bond. Secondary diamines containing two acidic N–H bonds and therefore having potentially at least two metalation sites would offer an interesting contrast but until this work they have not been investigated in this context. Reported herein, our first venture in introducing diamines to this chemistry by reacting a mixture of nBuLi and tBu₂Zn (or Me₂Zn) with N, N'-diosopropylethylenediamine iPrN(H)CH₂CH₂N(H)iPr has uncovered a surprising new synergic chemistry which leads ultimately to the transformation of the saturated ethylenediamine to a dianionic unsaturated diazaethene.

![Scheme 1. Comparison of non-cooperative reactions [nBuLi, (a) or tBu₂Zn, (b)] and cooperative reactions [nBuLi and tBu₂Zn, (c)] of metal alkyls with an ethylenediamine A. Reaction conditions: (a) hexane at 25 ºC 1 h; (b) hexane at 25 ºC 24 h and at 69 ºC 10 min; and (c) hexane at 69 ºC 2 h.](image-url)

To gauge whether a bimetallic mixture exhibits synergic activity, its separated monometallic components should be reacted with the substrate in control reactions. As expected, we found that tBu₂Zn is too weak a base to deprotonate N, N'-diosopropylethylenediamine, but instead forms the simple Lewis acid-Lewis base adduct [tBu₂Zn tBu₂Li] two (Scheme 1 : see Supporting Information for full details). While we easily generated a crystalline product from a 1:1 reaction of the more powerful base nBuLi and the diamine, and characterised it spectroscopically as [[LiN(tBu)CH₂CH₂N(tBu)]_{2} 2, which is dimeric with a 5,4,5-fused ring system having a LiN₂ core (Scheme 1). From the precedents of these homometallic zinc and lithium control reactions, in the absence of any co-operative interactions between the distinct metals one might anticipate that reaction of a 1:1 mixture of tBu₂Zn and nBuLi with N, N'-diosopropylethylenediamine in the presence of TMEDA (one

[a] R. Campbell, Dr P. García-Álvarez, Dr A. R. Kennedy, Prof R. E. Mulvey
WestCHEM, Department of Pure and Applied Chemistry
University of Strathclyde
Glasgow G1 1XL (UK)
Fax: (+)44 141-548 4822
E-mail: r.e.mulvey@strath.ac.uk

Supporting information for this article is available on the WWW under http://www.chemeurj.org/ or from the author.
molar equivalent) would produce a co-complex of composition \([\text{Bu}2\text{Zn} \cdot \{\text{PrN(Li-TMEDA)CH}_2\text{CH}_2\text{N(H)Pr}\}\] \(3\). Kinetically it does and we obtained the crystal structure of 3 (Figure 1). However, thermodynamically, this reaction mixture in hexane solution surprisingly affords the crystalline product ([TMEDA]-Li[PrNCHCHN/Pr]Zn(\text{Bu})\] \(4\). As depicted in Scheme 1, formation of this lithium 1,3-diaza-2-

The formation of this lithium 1,3-diaza-2-zincacetylene formally requires the loss of two protons and hydrogen gas to transform the neutral saturated ethylenediamine to a dianionic unsaturated variant. To check whether this transformation was the result of employing two or more of the metal reagent and/or adding TMEDA, a 3:1:0 and 3:1:3 mixture of nBuLi, diamine, and TMEDA, in the absence of \(\text{Bu}2\text{Zn}\), was evaluated but NMR spectroscopic studies confirmed only synthetically insignificant trace amounts of a diazaethene product with the major product being an ethylenediamine complex in which the \(-\text{NCH}_2\text{CH}_2\text{N}\) bridge is retained. On this evidence, the double (sp\(^3\)) C–H bond activation and concomitant C=C formation involved in the making of the metallo cycloalkene 4 can be attributed at least in part to a special bimetal synergetic effect under the particular conditions studied, though other factors such as changing concentration may also be important as C=C bond formation has been observed to occur in concentrated monometallic systems (see below).

Determined by X-ray crystallography, the molecular structures of 3 (Figure 1) and 4 can be classed as contact ion pair zinicates comprising a TMEDA-chelated lithium cation and an alkyl(diamido) zinc anion. Within 3 distorted tetrahedral Zn(1) completes a highly puckered C\(_3\)N\(_2\)Zn metallacyclic ring [see for instance torsion, Zn1–N2–C13–C12 = –48.82(17)°] with an N–Zn–N bite angle of 83.10(5)° with exo \(\text{Bu}\) substituents on Zn and \(i\text{Pr}\) substiutuents on N1 and N2 respectively. The \(i\text{Pr}\) groups both occupy equatorial sites and lie anti to each other across the 5-atom ring which exhibits an ethylene C(12)–C(13) bond length of 1.517(2) Å consistent with a single bond. Trigonal

planar Li(1) has N3 coordination comprising one diamine atom and two N atoms of TMEDA with the formal anionic Li–N(2) bond [1.993(3) Å] being shorter than the latter dative Li–N bonds (mean length, 2.158 Å). Though the connectivity within 4 can be crystallographically determined, generic winnowing of the samples adversely effected all modelling attempts and rules out discussion of its bonding dimensions. However, using an identical procedure to that for 4, we synthesized and crystallographically characterized the isostructural methyl homolog ([TMEDA]-Li[PrNCHCHN/Pr]Zn(\text{Me})\] \(5\), the crystal data for which are more accurate allowing such a discussion. In the molecular structure of 5 (Figure 2) the anionic moiety shows N–N-chelation by the N=C–C=N unit to zinc [bite angle, 83.98(9)°] to build a 5-atom metallacycle with exo \(i\text{Pr}\) and Me substituents on N and Zn atoms respectively. Distorted trigonal planar zinc deviates modestly from the C\(_3\)N\(_2\) plane, bonding symmetrically to the N atoms [lengths, 1.966(2) and 1.964(2) Å; Zn 0.459(3) Å out of plane]. In a typical range for sp\(^2\)–sp\(^2\) C=C–C bond length is 1.349(3) Å. The Li\(^+\) ion of the cationic moiety π-bonds \(\eta^2\) asymmetrically to the N=C=C=N unit, closer to one end [Li(1)–N(1), 2.165(4) Å; Li(1)–C(5), 2.235(4) Å] than the other [Li(1)–N(2), 2.301(4) Å; Li(1)–C(6), 2.286(4) Å]. This asymmetry continues with Li anti to Zn, with respect to the C\(_3\)N\(_2\) plane, and separated from it by 2.688(4) Å. Though new for Li:Zn combinations, the alkali metal face-capped 1,3-diaza-2-metallocyclopentene motif of 4 and 5 is known for other combinations including for example Na:Zn, K:Zn, K:Me, \(i\text{Pr}\):Li, Ga, \(i\text{Pr}\):Ga.[9,10] Most of these structural precedents originate from elemental alkali metal reduction of 1,4-diaza-1,3-butadienes or related unsaturated molecules which sets them synthetically apart from 4 and 5 as to the best of our knowledge these two Li:Zn examples represent the first to be synthesized from a completely non-activated aliphatic diamine.

Determined by X-ray crystallography, the molecular structures of 3 (Figure 1) and 4 can be classed as contact ion pair zinicates comprising a TMEDA-chelated lithium cation and an alkyl(diamido) zinc anion. Within 3 distorted tetrahedral Zn(1) completes a highly puckered C\(_3\)N\(_2\)Zn metallacyclic ring [see for instance torsion, Zn1–N2–C13–C12 = –48.82(17)°] with an N–Zn–N bite angle of 83.10(5)° with exo \(\text{Bu}\) substituents on Zn and \(i\text{Pr}\) substiutuents on N1 and N2 respectively. The \(i\text{Pr}\) groups both occupy equatorial sites and lie anti to each other across the 5-atom ring which exhibits an ethylene C(12)–C(13) bond length of 1.517(2) Å consistent with a single bond. Trigonal
The closest synthetic analogy to the reaction producing 4 and 5 is Veith’s report \(^{[11a]}\) of the 1,3-diaza-2-silycyclepentene 6a as it involves dilithiation of \(NBu(N)CH(CH)NHBu\) (Scheme 2). Distinct from our method, the anticipated dianionic diamide was not isolated but trapped in situ with a dichlorosilane to generate the neutral, as opposed to our anionic, heterocyclopentene. Oddly, 6a formed only in highly concentrated solutions\(^{[11b]}\) whereas dilute solutions\(^{[11b]}\) more akin to that employed in our study gave an alternative heterocyclopentane product 6b. Veith conceded that the reason for the double hydrogen abstraction from the ethylene backbone in forming 6a was unclear. In theory 4 and 5 having potentially labile metal centers primed for participation in salt metathesis reactions could be regarded as intermediates in conversions of this type.

![Scheme 2. Veith’s reaction of Bu(N)CH(CH)NHBu with nBuLi and further trapping with a dichlorosilane.](image)

A repeat reaction of \(nBu_2Zn, nBuLi, \) and the diamine in the additional presence of the bulky ketone \((tBu)_2CH=O\) (Scheme 3) may have provided an initial clue to the mechanism behind the formation of 4. An NMR analysis of the crude reaction revealed a complicated mixture of products,\(^{[5]}\) among which, significantly, 4 and the lithium alkoxide \([tBu_2CH(O)Li]_2\), \(7\) were clearly identified. The existence of the 7, the result of a hydride addition to the electrophilic \(C=O\) of the ketone, hints at the possible participation of an intermediate hydride species in the \(N-\text{CH}−\)role of the lithium-zinc co-operativity. Veith’s report

![Scheme 3. Reaction of \(iPr(N)CH_2(CH)N(H)Pr\) with a nBuLi/R,Zn/TMEDA synergic mixture to form 4 or 5 via a putative intermediate hydride which can also be trapped with a ketone to generate a lithium alkoxide](image)

\section*{Experimental Section}

\textbf{General methods:} All reactions and manipulations were carried out in an atmosphere of dry pure argon gas using standard Schlenk and glovebox techniques. \(n\)-Hexane was distilled from sodium-benzophenone. NMR spectra were recorded on a Bruker AVANCE 400 NMR spectrometer, operating at 400.13 MHz for \(^1H\), 155.50 MHz for \(^13C\) and 100.62 MHz for \(^15N\). Data for X-ray crystal structure determination were obtained with an Oxford Diffraction Gemini diffractometer using Mo-K\(\alpha\) (\(\lambda = 0.71073\) Å; compounds 5 and 7) and Cu-K\(\alpha\) (\(\lambda = 1.54180\) Å; compounds 1 and 3) graphite monochromated radiations. Satisfactory elemental analyses of the compounds could not be obtained due to their high air- and moisture-sensitive nature.

\textbf{Synthesis of 1:} A Schlen tube was charged with 4 mmol (0.72 g) of \(ZnBu_2\), which was dissolved in 20 mL of hexane and one equivalent of \(iPr(N)CH_2(CH)N(H)Pr\) (4 mmol, 0.72 mL) was added via syringe. The resultant colourless solution was allowed to stir overnight at RT and heated at reflux temperature for 10 min. To aid crystallisation the solution was concentrated under reduced pressure to a final volume of 2-3 mL and, after standing overnight at \(-27^\circ C\), colourless crystals of 1 (suitable for X-ray crystallographic analysis) were obtained (0.20 g, 15 %). The low crystalline yield obtained for 1 is just a reflection of its high solubility, being the overall reaction yield almost quantitative as determined by NMR spectroscopic analyses of both 1 and reaction filtrates. \(^1H\) NMR (400.13 MHz, \(CD_2Cl_2\), 293 K): \(\delta = 2.62\) (m, 2 H, \(CH\), \(\beta\Pr\)), 2.02 (m, 4 H, \(CH_2\)), 1.34 (s, 18 H, \(CH_2\), \(\betaBu\)), 0.90 (d, \(\beta\J = 5.2\) Hz, 12 H, \(CH_2\), \(\betaPr\)), 0.85 (s, br, 2 H, \(NH\)). \(^{13}C\) \((\text{\textit{13}C})\) NMR (100.62 MHz, \(CD_2Cl_2\), 293 K): \(\delta = 49.5\) (\(\beta\CH, \betaPr\)), 47.2 (\(CH_2\)), 35.8 (\(CH_2\), \(\betaBu\)), 23.1 (\(CH_2\), \(\betaPr\)), 19.9 (\(\text{\textit{13}C}(CH)\), \(\betaPr\)).

\textbf{Crystallisation of 3:} 1.25 mL (2 mmol) \(nBuLi\) was added dropwise to a solution of 0.36 mmol (0.23 mL) DPEA(H) in 10 mL hexane at 0 °C. This temperature was maintained as 0.3 mL (2 mmol) TMEDA and a solution of 0.36 g (2 mmol) \(BuBuZn\) in 10 mL hexane were added giving a pale yellow solution with some white solid. This solution was stored immediately at \(-27^\circ C\) giving a crop of colourless crystals suitable for X-ray crystallographic analysis corresponding to complex 3. Attempts to characterise by NMR spectroscopy the kinetic product 3 resulted unsuccessful due to its high thermal instability.

\textbf{Synthesis of 4:} 1.25 mL (2 mmol) \(nBuLi\) was added dropwise to a solution of 0.36 mL (2 mmol) DPEA(H) in 10 mL hexane at 0 °C. This temperature was maintained as 0.3 mL (2 mmol) TMEDA and a solution of 0.36 g (2 mmol) \(BuBuZn\) in 10 mL hexane were added giving a pale yellow solution with some white solid.
This solution was refluxed for 2 hours producing a bright orange solution. Storing the solution at 70 °C gave a crop of yellow crystals of 4 which were isolated in a 38.9 % (0.30g) crystalline yield. δ (ppm) = 5.83 (s, 2 H, CH$_2$-CH), 3.48 (m, 2 H, CH$_2$), 1.81 (s, 12 H, CH$_3$-TMEDA), 1.60 (s, 9 H, CH$_3$-Bu), 1.58 (s, 4 H, CH$_2$-iPr), 2.40 (d, J = 6.3 Hz, 6 H, CH$_3$), 1.32 (d, J = 6.3 Hz, 6 H, CH$_3$-iPr). δ (ppm) = 116.3 (s, 9 H, C$_{13}$H$_{27}$tBu), 70 °C gave a crop of yellow crystals of which were isolated in a 55.5% (0.25g) crystalline yield.

Acknowledgements

We gratefully acknowledge the generous support of the UK EPSRC (grant award no. EP/F603733/1) and the Royal Society/Wolfson Foundation (research merit award to R.E.M.). We also thank our colleague Dr Eva Hevia for many enlightening discussions. This research was also sponsored by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme (for P.-G. A.).

Keywords: amines | diamines | hydride | lithium | metallacycle | synergy | zinc

Received: (will be filled in by the editorial staff) Revised: (will be filled in by the editorial staff) Published online: (will be filled in by the editorial staff)
Entry for the Table of Contents (Please choose one layout only)

Layout 1:

Metal-Mediated Synthesis

_Ross Campbell, Pablo García-Alvarez,* Alan R. Kennedy, and Robert E. Mulvey* ……………..

Page – Page

Synergic Transformation of an Ethylenediamine to a Lithium 1, 3-Diaza-2-zincacyclopentene via an Alkyllithium/Bis(alkyl)zinc Mixture

Deadly Duo: Four bonds in total, two N-H and two C-H bonds have been cleaved from a neutral secondary diamine through the cooperative effects of a lithium alkyl-zinc bisalkyl coalition aided by TMEDA to generate a dianionic diazaethene.
Supporting Information

Cleave and Capture Chemistry: Synergic Fragmentation of THF

Robert E. Mulvey1*, Victoria L. Blair1, William Clegg2, Alan R. Kennedy1, Jan Klett1, Luca Russo2

1 WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, U.K.
2 School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K.
*e-mail: r.e.mulvey@strath.ac.uk

Synthesis and Characterisation of Compounds 3, 4, 5 and 6.

General Methods. \textit{n}-Hexane and THF were distilled from sodium-benzophenone, TMEDA was distilled from CaH\textsubscript{2}. All synthetic work was carried out under an inert argon atmosphere using standard Schlenk and glove box techniques. 1H and 13C NMR spectra were recorded on either a Bruker AV 400 or Bruker DPX 400 and were referenced to the resonances of the deuterated solvents used. Bis(trimethylsilylmethyl)magnesium Mg(CH\textsubscript{2}SiMe\textsubscript{3})\textsubscript{2}[1] and bis(trimethylsilylmethyl)manganese Mn(CH\textsubscript{2}SiMe\textsubscript{3})\textsubscript{2}[2,3] were prepared according to literature procedures. The crude bis(trimethylsilylmethyl)magnesium was also purified via sublimation at 175°C (~10–2 torr) to furnish pure Mg(CH\textsubscript{2}SiMe\textsubscript{3})\textsubscript{2}.

Experimental Crystallography. Measurements were made either with an Enraf Nonius Kappa Diffractometer (4) or an Oxford Diffraction Xcalibur Sapphire system (5 and 6). All structures were refined to convergence against \(F^2\) using programs from the SHELX family.[4] Selected parameters are summarized in the text and full details given in the supplementary cif files. 4 and 5 are well ordered and routinely modeled compounds. Although otherwise isostructural with 5, the structure of compound 6 appears somewhat disordered in the region of the captured dianion. After several trial calculations, the best model described a species with an 80% occupied butadiene site and a 20% occupied benzene site (both twice deprotonated). Whether the benzene fragment derives from an impurity in the starting materials or is formed \textit{in situ}, possibly \textit{via} further reaction of the butadiene fragments, is unknown. CCDC-756447 (4), CCDC-756448 (5) and CCDC-756449 (6) contain the supplementary crystallographic data for this publication. These data can be obtained free of
charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: + 44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).

Synthesis of \([\text{Na}_2\text{Mg}_2(\text{TMP})_4(\text{O})]\), 3 and \([\{\text{TMEDA}\text{Na}(\mu-\text{TMP})\}_2\{1,4-\text{Mg}(\text{TMP})_2-\text{C}_4\text{H}_4\}]\), 5: TMPH (0.34 mL, 2.0 mmol) was added to a suspension of BuNa (0.08 g, 1.0 mmol) in dry n-hexane (20 mL) and the resultant mixture was allowed to stir at room temperature for 1 h. Mg(CH$_2$SiMe$_3)_2$ (0.20 g, 1.0 mmol) and TMEDA (0.15 mL, 1.0 mmol) was added to give a light yellow solution. Next, THF (0.08 mL, 1.0 mmol) was added and the colourless solution was gently heated for 5 minutes. Upon cooling to room temperature large colourless needle crystals of 5 were deposited (0.23 g, 48.9 %). The mother liquor was subsequently further concentrated under vacuum and upon standing at room temperature colourless plate crystals of 3 were deposited (0.14 g, 41.7 %). mp (for 3): 202 ºC (decomposition); mp (for 5): 186 ºC (decomposition).

NMR data for 3: 1H NMR (400.03 MHz, d$_6$-benzene, 300 K): δ 1.98 (m, 1H, γ-CH$_2$, TMP), 1.74 (d (br), 3H, γ-CH$_2$, TMP & β-CH$_2$, TMP), 1.47 (s, 6H, CH$_3$ TMP), 1.26 (s, 6H, CH$_3$ TMP), 1.00 ppm (m (br), 2H, γ-CH$_2$, TMP). 13C NMR (100.59 MHz, d$_6$-benzene, 300 K): δ 51.80 (γ-C-TMP), 43.3 (β-CH$_2$, TMP), 39.1 (CH$_3$-TMP), 34.3 (CH$_3$-TMP), 19.9 ppm (γ-CH$_2$, TMP). NMR data for 5: 1H NMR (400.03 MHz, d$_6$-benzene, 300 K): δ 6.75 (s, 4H, C$_4$H$_4$), 2.18 (s, 8H, C$_4$H$_2$, TMEDA), 2.06 (s, 24H, CH$_3$, TMEDA), 1.68 (s (br), 48H, C$_4$H$_4$), 1.49 ppm (s (br), 24H, γ-CH$_2$, TMP & β-CH$_2$, TMP). 1H NMR (400.03 MHz, d$_8$-THF, 300 K): δ 6.50 (m, 2H, C$_4$H$_4$), 6.36 (m, 2H, C$_4$H$_4$), 2.30 (s, 8H, CH$_3$, TMEDA), 2.15 (s, 24H, CH$_3$, TMEDA), 1.67 (m, 8H, γ-CH$_2$, TMP), 1.24 (s (br), 48H, CH$_3$, TMP), 1.16 ppm (m (br), 16H, β-CH$_2$, TMP). 13C NMR (100.59 MHz, d$_8$-THF, 300K): 163.32 (C$_B$, C$_4$H$_4$), 154.99 (C$_A$, C$_4$H$_4$), 58.94 (CH$_2$-TMEDA), 52.62 (α-C-TMP), 46.23 (CH$_3$-TMEDA), 42.57 (β-CH$_2$, TMP), 35.82 (CH$_3$-TMP), 20.75 ppm (γ-CH$_2$, TMP).

Crystal data for 5: C$_{52}$H$_{108}$Mg$_2$Na$_8$Na$_2$, $M_r = 940.06$ g/mol, monoclinic, space group P2$_1$/n, $a = 8.2736(3)$, $b = 21.4955(8)$, $c = 16.5688(6)$ Å, $\beta = 90.708(4)$ °, $V = 2946.46(19)$ Å3, $Z = 2$, $\lambda = 0.71073$ Å, $\mu = 0.094$ mm$^{-1}$, $T = 123$ K; 31164 reflections, 7797 unique, R_{int} 0.0273; final refinement to convergence on F^2 gave $R = 0.0378$ (F, 5648 obs. data only) and $R_w = 0.1036$ (F^2, all data), GOF = 1.069.
Figure S1. Molecular structure of 5 (on the 30% probability level). Selected hydrogen atoms have been omitted for clarity.

Synthesis $\{[(\text{TMEDA})\text{Na}(\mu-\text{TMP})]_2[1,4-\text{[Mg(TMP)]]}_2 - \text{C}_4\text{D}_4\}$, 5(d4): TMPH (0.34 mL, 2.0 mmol) was added to a suspension of BuNa (0.08 g, 1.0 mmol) in dry n-hexane (20 mL) and the resultant mixture was allowed to stir at room temperature for 1 h. Mg(CH$_2$SiMe$_3$)$_2$ (0.20 g, 1.0 mmol) and TMEDA (0.15 mL, 1.0 mmol) was added to give a light yellow solution. Next, d8-THF (0.08 mL, 1.0 mmol) was added and the colourless solution was gently heated for 5 minutes. Upon cooling to room temperature large colourless needle crystals of 5(d4) were deposited (0.18 g, 38.2 %).

NMR data for 5(d4): 1H NMR (400.03 MHz, d$_6$-benzene, 300 K): δ 2.18 (s, 8H, CH$_2$, TMEDA), 2.06 (s, 24H, CH$_3$, TMEDA), 1.68 (s (br), 48H, CH$_3$ TMP), 1.49 ppm (s (br), 24H, γ-CH$_2$, TMP & β-CH$_2$, TMP).

Synthesis of $[\text{Na}_2\text{Mn}_2(\text{TMP})_4(\text{O})]$, 4 and $\{[(\text{TMEDA})\text{Na}(\mu-\text{TMP})]_2[1,4-\text{[Mn(TMP)]]}_2 - \text{C}_4\text{H}_4\}$, 6: TMPH (0.34 mL, 2.0 mmol) was added to a suspension of BuNa (0.08 g, 1.0 mmol) in dry n-hexane (20 mL) and the resultant mixture was allowed to stir at room temperature for 1 h. Mn(CH$_2$SiMe$_3$)$_2$ (0.23 g, 1.0 mmol) and TMEDA (0.15 mL, 1.0 mmol) was added to give a light orange solution. Next, THF (0.08 mL, 1.0 mmol) was added and the solution allowed to stir at room temperature for 12 hrs. The red solution was filtered and concentrated slightly under vacuum. Allowing the solution to stand at room temperature for 1 week afforded red/orange needle crystals of 6 to form (0.25 g, 49.9 %). The mother liquor was further concentrated in vacuum to furnish light pink plate crystals of 4 (0.16 g, 43.6 %). mp (for 4): 192 ºC (decomposition); mp (for 6): 183 ºC (decomposition).
Crystal data for 4: C_{36}H_{72}Mn_2N_4Na_2O, \(M_r = 732.84 \) g/mol, monoclinic, space group \(P2_1/n \), \(a = 11.985(2) \), \(b = 11.542(2) \), \(c = 15.364(2) \) Å, \(\beta = 107.15(3) ^\circ \), \(V = 2030.8(7) \) Å\(^3\), \(Z = 2 \), \(\lambda = 0.71073 \) Å, \(\mu = 0.674 \) mm\(^{-1}\), \(T = 150 \) K; 19712 reflections, 3539 unique, \(R_{int} = 0.0401 \); final refinement to convergence on \(F^2 \) gave \(R = 0.0314 \) (\(F \), 2809 obs. data only) and \(R_w = 0.0788 \) (\(F^2 \), all data), GOF = 1.066.

Figure S2. Molecular structure of 4 (on the 30% probability level). Hydrogen atoms have been omitted for clarity.
Crystal data for 6: C_{52.4}H_{108}Mn_2N_8Na_2, \(M_r = 1006.13 \) g/mol, monoclinic, space group P2\(_1/n \), \(a = 8.2875(3), b = 21.6756(9), c = 16.5068(7) \) Å, \(\beta = 90.465(4) \) °, \(V = 2965.1(2) \) Å\(^3\), \(Z = 2 \), \(\lambda = 0.71073 \) Å, \(\mu = 0.479 \) mm\(^{-1}\), \(T = 123 \) K; 35537 reflections, 7821 unique, \(R_{\text{int}} = 0.0389 \); final refinement to convergence on \(F^2 \) gave \(R = 0.0549 \) (\(F \), 5597 obs. data only) and \(R_w = 0.1424 \) (\(F^2 \), all data), GOF = 1.072.

![Molecular structure of 6](image)

Figure S3. Molecular structure of 6 (on the 30% probability level). Hydrogen atoms and minor disorder have been omitted for clarity.
Figure S4. 1H NMR spectrum of $[\text{Na}_2\text{Mg}_2(\text{TMP})_4(\text{O})]$, 3 in d_6-benzene.

Figure S5. 13C NMR spectrum of $[\text{Na}_2\text{Mg}_2(\text{TMP})_4(\text{O})]$, 3 in d_6-benzene.
Figure S6. 1H EXSY NMR spectrum of [Na$_2$Mg$_2$(TMP)$_4$(O)], 3 in d$_6$-benzene.

Figure S7. 1H NOESY NMR spectrum of [Na$_2$Mg$_2$(TMP)$_4$(O)], 3 in d$_6$-benzene.
Figure S8. 1H NMR spectrum of $[\{(\text{TMEDA})\text{Na(\mu-TMP)}\} \cdot 2\{1,4-[\text{Mg(TMP)}]\} \cdot \text{C}_4\text{H}_4\}]$, 5 in d$_6$-benzene.

Figure S9. 1H NMR spectrum of $[\{(\text{TMEDA})\text{Na(\mu-TMP)}\} \cdot 2\{1,4-[\text{Mg(TMP)}]\} \cdot \text{C}_4\text{H}_4\}]$, 5 in d$_8$-THF.
Figure S10. 13C NMR spectrum of $\{(\text{TMEDA})\text{Na(μ-TMP)}\}_2\{1,4-[\text{Mg(TMP)}]_2\text{C}_4\text{H}_4\}$, 5 in d$_8$-THF.

Figure S11. 1H NMR spectrum of $\{(\text{TMEDA})\text{Na(μ-TMP)}\}_2\{1,4-[\text{Mg(TMP)}]_2\text{C}_4\text{D}_4\}$, 5(d$_4$) in d$_6$-benzene.
Figure S12. 2H NMR spectrum of $[\{(\text{TMEDA})\text{Na(μ-TMP)\}_2}\{1,4-[\text{Mg(TMP)\}_2]-\text{C}_4\text{H}_4\}]$, 5(d4) in benzene.

Figure S13. Comparison of 1H NMR spectra of $[\{(\text{TMEDA})\text{Na(μ-TMP)\}_2}\{1,4-[\text{Mg(TMP)\}_2]-\text{C}_4\text{H}_4\}]$, 5 (upper spectrum) and $[\{(\text{TMEDA})\text{Na(μ-TMP)\}_2}\{1,4-[\text{Mg(TMP)\}_2]-\text{C}_4\text{D}_4\}]$, 5(d4) (lower spectrum) in d$_6$-benzene.
Figure S14. 1H NMR spectrum of $[\{(\text{TMEDA})\text{Na}(\mu-\text{TMP})\}_2\{1,4-[\text{Mg}(\text{TMP})]_2\text{C}_4\text{H}_4\}]$, 5, hydrolysed with D$_2$O to produce C$_4H_4D_2$ in d$_6$-benzene.

Figure S15. 1H EXSY NMR spectrum of $[\{(\text{TMEDA})\text{Na}(\mu-\text{TMP})\}_2\{1,4-[\text{Mg}(\text{TMP})]_2\text{C}_4\text{H}_4\}]$, 5 in d$_6$-benzene.
Figure S16. 1H EXSY NMR spectrum of $[(\text{TMEDA})\text{Na}(\mu\text{-TMP})]_2\{1,4-[\text{Mg}(\text{TMP})]_2\text{C}_4\text{H}_4\}$, 5 in d$_6$-benzene, detail of the aliphatic region.

Figure S17. 1H EXSY NMR spectrum of $[(\text{TMEDA})\text{Na}(\mu\text{-TMP})]_2\{1,4-[\text{Mg}(\text{TMP})]_2\text{C}_4\text{H}_4\}$, 5 in d$_6$-benzene, detail of the aromatic region.
Figure S18. 1H NOESY NMR spectrum of $\{(\text{TMEDA})\text{Na}(\mu-\text{TMP})\}_2\{1,4-\text{[Mg(TMP)]}_2-\text{C}_4\text{H}_4\}$, 5 in d$_6$-benzene.

Figure S19. 1H NOESY NMR spectrum of $\{(\text{TMEDA})\text{Na}(\mu-\text{TMP})\}_2\{1,4-\text{[Mg(TMP)]}_2-\text{C}_4\text{H}_4\}$, 5 in d$_6$-benzene, detail of the aliphatic region.
Figure S20. 1H EXSY NMR spectrum of a mixture of [Na$_2$Mg$_2$(TMP)$_4$(O)], 3 and [{(TMEDA)Na(μ-TMP)}$_2${1,4-[Mg(TMP)]$_2$-C$_4$H$_4$}], 5 in d$_6$-benzene.

Figure S21. 1H NOESY NMR spectrum of a mixture of [Na$_2$Mg$_2$(TMP)$_4$(O)], 3 and [{(TMEDA)Na(μ-TMP)}$_2${1,4-[Mg(TMP)]$_2$-C$_4$H$_4$}], 5 in d$_6$-benzene.
Figure S22. 1H NOESY NMR spectrum of a mixture of $[\text{Na}_2\text{Mg}_2(\text{TMP})_4(O)]$, 3 and $[(\text{TMEDA})\text{Na}(\mu-\text{TMP})]_2\{1,4-[\text{Mg}(\text{TMP})]_2\text{C}_4\text{H}_4\}$, 5 in d_6-benzene, detail of the aliphatic region.

Figure S23. 1H NOESY NMR spectrum of a mixture of $[\text{Na}_2\text{Mg}_2(\text{TMP})_4(O)]$, 3 and $[(\text{TMEDA})\text{Na}(\mu-\text{TMP})]_2\{1,4-[\text{Mg}(\text{TMP})]_2\text{C}_4\text{H}_4\}$, 5 in d_6-benzene, detail of the aliphatic region.
References

