
This version is available at https://strathprints.strath.ac.uk/27693/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/27693/

This is an author produced version of a paper published in Chemical Communications, 46. pp. 2397-2398. ISSN 1359-7345. This version has been peer-reviewed but does not include the final publisher proof corrections, published layout or pagination.

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk) and the content of this paper for research or study, educational, or not-for-profit purposes without prior permission or charge. You may freely distribute the url (http://strathprints.strath.ac.uk) of the Strathprints website.

Any correspondence concerning this service should be sent to The Strathprints Administrator: eprints@cis.strath.ac.uk
A novel oxygen catalyst is prepared via the photodeposition of ruthenium (IV) oxide on a titania photocatalyst derived from a perruthenate precursor.

The splitting of water into hydrogen and oxygen has long been an attractive prospect as a route to generating a useful fuel. The ability to achieve this using sunlight is of particular interest as it is viewed as a truly renewable source of energy. A number of photocatalysts have been reported for UV driven water splitting. However, for efficient solar energy to chemical energy conversion, *visible-light* photocatalysts need to be developed and these usually require the presence of effective H₂ and O₂ catalysts. One of the most promising catalysts for water oxidation is a partially dehydrated form of commercially available RuO₂·xH₂O. It's degree of hydration has been found to be crucial for high catalyst activities, with optimal levels being ~14 wt%. This is achieved by thermally activating the commercial material (RuO₂·xH₂O, where x is ca. 1.6) at 150°C for 2 h to produce RuO₂·yH₂O (where y is ca. 1.2; hereafter referred to as “RuO₂•”). Higher levels of hydration produce catalysts that are susceptible to oxidative corrosion to RuO₄⁻ at RuO₄⁺ due to sintering and the associated significant drop in surface area.

A number of methods exist for the loading of “RuO₂•” onto substrate surfaces. All involve either difficult to produce and handle starting materials (such as RuO₂), high temperature oxidations (which can completely dehydrate the RuO₂•), or both. As a result, these methods can introduce inconsistencies between loadings and give rise to poor quality and low activity catalysts.

Reductive or oxidative photodeposition is an ideal method for the loading of catalytic materials onto the surfaces of photocatalysts. To date, the range of metal oxides deposited for the loading of catalytic materials onto the surfaces of photocatalysts needs to be developed and generally low activity catalysts.

Unfortunately, we have found this material exhibits little or no activity as a water oxidation catalyst. This study prompted us to investigate a simple photo-deposition method using the higher oxides of ruthenium as precursors. Thus, in a one-pot reaction, powdered TiO₂ (Degussa P25) was stirred in a aqueous solution of KRUO₄ and irradiated with a Xe or Hg arc lamp. KRuO₄ consumption was monitored via centrifugation of the supernatant solution. The results of this work are illustrated in figure 1 and show that the green RuO₄⁻ (λ_max = 315 and 385 nm) disappears with irradiation time. Concurrent with this change the titania becomes grey in colour, indicating the formation of

\[4\text{RuO}_4^- + 4\text{H}^+ + 4\text{TiO}_2 \xrightarrow{\text{hv}} 4\text{TiO}_2/\text{RuO}_2 + 3\text{O}_2 + 2\text{H}_2\text{O} \] (1)

After photodeposition, all TiO₂/RuO₂ catalysts were thermally activated (2h @ 150°C) to ensure high activity and oxidative corrosion stability. High resolution TEM images of the TiO₂/RuO₂ powder particles reveal the presence of small deposits (2-3 nm diameter) that are most likely ruthenium (IV) oxide particles very finely distributed over the surface of the titania. SEM-EDX indicates a level of ruthenium loading at 0.5%/w for all samples. Whilst much of the literature has focussed on the testing of such loaded semiconductor photocatalysts for the UV driven splitting of water, few have independently tested the oxygen catalyst activities of these materials. Ce(IV) is an excellent benchmark test reagent of water oxidation catalyst materials, as it is sufficiently oxidising for the reaction to proceed readily and yet kinetically inert. In the presence of an oxygen catalyst Ce(IV) is able to facilitate the oxidation of water by acting as a sacrificial electron acceptor (eqn 2).

\[4\text{Ce}^{4+} + 2\text{H}_2\text{O} \xrightarrow{\text{O}_2\text{catalyst}} 4\text{Ce}^{3+} + 4\text{H}^+ + \text{O}_2 \] (2)

During the reaction (eqn 2) it is possible to monitor the...
consumption of Ce(IV) both visually and with UV spectro-photometry (figure 2). Thus, when used to test the photodeposited TiO$_2$/RuO$_2$ catalyst, the yellow solution produced upon injection of the Ce(IV) decolourises as the Ce(IV) is reduced to Ce(III). Whilst this demonstrates the consumption of Ce(IV), it gives no direct information regarding the generation of oxygen, although bubbles can be seen.

In order to demonstrate the stoichiometric generation of oxygen via eqn (2) by the TiO$_2$/RuO$_2$ catalyst, O$_2$ evolution in the solution was followed using a Clark-type electrode (Rank Brothers), and simultaneously the variation in oxygen level in the gas phase was monitored by gas chromatography. The results of this work are illustrated in figure 3 and show that after the initial catalytic reaction and the associated increase in dissolved oxygen, this concentration decreases with a concomitant increase in oxygen in the gas phase. Near stoichiometric amounts (97%) of the expected oxygen level (7.5 μmol) were observed after 2 h.

The stability of the TiO$_2$/RuO$_2$ catalyst was established via a series of repeated purge and injection cycles, at a catalyst concentration of 0.1 wt%. It was shown that there was little appreciable decrease in catalytic rate with repeated (5 cycles) inoculation with Ce(IV). This is in contrast to results for non-heat-treated TiO$_2$/RuO$_2$, where a marked decrease in catalytic activity was observed upon repeated injection. Furthermore, the catalytic rate was found to be proportional to catalyst concentration, as expected for a surface-catalysed reaction.

A comparison of the photodeposited TiO$_2$/RuO$_2$ catalyst with catalysts prepared by two alternate loading methods (e.g. decomposition of RuO$_3$ onto TiO$_2$ followed by heat treatment at 150°C, and incipient wetness of RuCl$_3$2H$_2$O onto TiO$_2$ followed by thermal oxidation at 500°C in air showed both had inferior activities.

Other semiconductor supports were also found to be suitable for photodeposition. One of note is Kronos VLP 7001 (N-doped titania), which, when used in the UV-light driven oxidation of water alone using 0.01 M Na$_2$S$_2$O$_8$ in 0.1 M NaOH as the sacrificial electron acceptor, displays no catalytic activity. Once loaded with "RuO$_4$" however, a marked ability for water-oxidation is observed.

In summary, photodeposition of RuO$_2$.xH$_2$O from K/RuO$_2$ is a simple method for loading a highly active, finely divided form of ruthenium (IV) oxide onto a semiconductor photocatalyst, such as TiO$_2$. A commercially available visible light photocatalyst has shown an increase in rate for UV light driven water oxidation upon loading with a photodeposited RuO$_2$ oxygen catalyst. This method should prove useful in preparing further visible light driven water-splitting systems.

Notes and references
WestChem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, U.K. Fax: 44 141 548 2458; E-mail: a.mills@strath.ac.uk

A novel oxygen catalyst (TiO\textsubscript{2}/RuO\textsubscript{2}) is prepared via the photodeposition of ruthenium(IV) oxide on a titania photocatalyst derived from perruthenate. The figure shows the rate of oxygen evolution as a function of catalyst concentrations (0-67 mg/L). The inset shows the colour change (yellow/colourless) which arises from the consumption of the sacrificial oxidant Ce(SO\textsubscript{4})\textsubscript{2}.