Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Greener and sustainable method for alkene epoxidations by polymer-supported Mo(VI) catalysts

Ambroziak, K. and Mbeleck, R. and Saha, B. and Sherrington, D.C. (2010) Greener and sustainable method for alkene epoxidations by polymer-supported Mo(VI) catalysts. International Journal of Chemical Reactor Engineering, 8 (A125). pp. 1-13. ISSN 1542-6580

[img]
Preview
PDF (strathprints027543.pdf)
strathprints027543.pdf

Download (458kB)| Preview

    Abstract

    A polybenzimidazole supported Mo(VI) (PBI.Mo) catalyst has been prepared and characterised. The catalytic activities of the PBI.Mo catalyst in epoxidation of alkenes with tert-butyl hydroperoxide (TBHP) as an oxidant have been studied under different reaction conditions in a batch reactor. As alkene representatives we have chosen cyclohexene, limonene, α-pinene and 1-octene (a less reactive terminal alkene). The order of reactivity of the alkenes was found to be: cyclohexene>limonene>α-pinene>1-octene. The stability of each polymer catalyst was assessed by recycling a sample in batch reaction using conditions that will form the basis of the continuous process. The loss of Mo from each support has been investigated by isolating any residue from the reaction supernatant solutions, following removal of the heterogeneous polymer catalyst, and then using the residues as potential catalysts in epoxidation reactions.