Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Extension of low-thrust propulsion to the autonomous coplanar circular restricted four body problem with application to future Trojan Asteroid missions

Ceccaroni, M. and Biggs, J.D. (2010) Extension of low-thrust propulsion to the autonomous coplanar circular restricted four body problem with application to future Trojan Asteroid missions. In: 61st International Astronautical Congress, IAC 2010, 2010-09-27 - 2010-10-01.

[img] PDF

Download (623kB)


    An Autonomous Coplanar Circular Restricted Four Body Problem (CRFBP) is considered, where the massless body is a low-thrust spacecraft. 'Natural' and 'artificial' (i.e. created with the use of continuous low-thrust propulsion) equilibrium solutions are identified, that have the potential to be exploited in future science missions. Results show that, with zero thrust, there are unstable equilibrium points close to the third primary. However, artificial equilibrium points, displaced from the natural ones, can be generated with the use of constant low-thrust. Furthermore, these points are proved to be stable in certain regions about the third primary mass. This is particularly advantageous since it means that it would be possible to continuously maintain a spacecraft about these strategic observation points, close to the smaller primary, without the need for state feedback control. The Sun-Jupiter-Trojan Asteroid-Spacecraft system is considered, as a particular case of the Autonomous Coplanar CRFBP. Curves of artificial equilibrium points are then identified. Furthermore, the stability analysis of these points reveals the region where they are stable. In this region four bounded orbits close to the Asteroid are proved to exist, that can be reached and maintained with a constant low-thrust lower than 10µN.