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Abstract: This paper presents a new approach to the design of a model-based fault detection
and diagnosis system for application to a plastic film extrusion process. The design constructs a
residual generator via parity relations. A multi-objective optimisation problem must be solved
in order for the residual to be sensitive to faults but insensitive to disturbances and modelling
errors. In this paper, we exploit a genetic algorithm for solving this multi-objective optimisation
problem and the resulting fault detection and diagnosis system is applied to a first-principles
model of a plastic film extrusion process. Simulation results demonstrate that various types of
faults can be detected and diagnosed successfully.
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1. INTRODUCTION

A fault is defined as an unpermitted deviation of at
least one characteristic property or variable of the process
(Isermann and Ball, 1996). Types of faults occurring in
industrial processes include actuator faults, sensor faults,
and component faults. For industrial processes to satisfy
performance specifications, any faults should be detected
and diagnosed correctly. This process can be realised by
applying a fault detection and diagnosis (FDD) system,
which can be data-driven, knowledge-based, or model-
based. The FDD system developed in this paper is model-
based. Unlike the data-driven and knowledge-based ap-
proaches (Chiang et al., 2001), the model-based approach
exploits a first-principles model to generate residuals via
consistency checks between the plant observations and a
first-principles model. The three main ways to generate
residuals are observers, parameter estimation, and parity
relations.

In addition to the development of a FDD system, the
results of this paper are applied to a first-principles model
of a plastic extrusion process. This model is described
in Hur et al. (2008) and is used to simulate the plant
throughout this paper. This large-scale model consists
of a number of smaller sub-models. Each of these sub-
models describe a main stage of the plastic film extrusion
process, such as extrusion, where polymer melt is fed
into a die; casting, where the polymer melt is discharged
through the die gap onto a rotating casting drum to form
a continuous amorphous sheet; machine-directional (MD)
stretching; cross-directional (CD) stretching; heat setting;
and winding, where finished product is rolled.
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Residual generation is the most important task in fault
detection (FD) and is presented in Section 2. Optimal
residuals require to be sensitive to faults but insensitive to
disturbances, which leads to a multi-objective optimisation
problem. Several analytical methods for solving this multi-
objective optimisation problem have been suggested (Lou
et al., 1986). By contrast, we break this tradition and
utilise an evolutionary algorithm (Konak et al., 2006),
or more specifically, a genetic algorithm, for solving this
multi-objective optimisation problem in Section 3. By
the use of a genetic algorithm, the possibility of finding
the global optimisation solution – global minimum – is
increased by avoiding the calculation of cost function gra-
dients, which can lead to local minima. Another advantage
is that it is relatively straightforward to implement.

Chen and Patton (1999) employed a combination of a
genetic algorithm, the method of inequalities and the
moving-boundaries algorithm for optimising an observer
based residual generator. However, this combination has
never been applied for optimising a parity relation based
residual generator in any literature. The parity relation
based residual generation has a few advantages over the
observer based residual generation. Unlike the observer
approach, the parity relation approach does not convert
the reference model into the frequency domain, which can
increase the computation time required for optimisation.
Also, there is no need to employ an extra algorithm,
such as the eigenstructure assignment method (Chen and
Patton, 1999) for guaranteeing the stability condition. The
plant observation for a plastic film extrusion process is
the cross-directional (CD) thickness profile (Featherstone
et al., 2000), which needs to be divided into many sec-
tions for controlling and monitoring purposes. When the
observer approach is employed, the number of the residual
signals equal the number of the CD sections and, therefore,
determining the thresholds can be difficult or the use of a



dimensionality reduction technique is required. However,
when the parity relation approach is employed, all the
residuals are arranged under one signal.

The application of this FD system to the first-principles
model is presented with simulation results in Section 4.
Once a fault has been detected, the next stage is to
determine which fault has occurred and this stage is
often referred to as fault diagnosis. We modify the fault
detection (FD) system to a fault detection and diagnosis
(FDD) system, and the application of this FDD system to
the first-principles model is demonstrated in Section 5.

2. RESIDUAL GENERATION

The parity relation based residual generation requires a
model in the state space form as follows:

x(k + 1) = Ax(k) + Bu(k) (1)

y(k) = Cx(k) + Du(k) (2)

where y(k) ∈ Rn denotes the process measurement, u(k) ∈
Rn is the control action, and x(k) ∈ Rr represents the
states.

The proposed FDD system design utilises the System
Identification ToolboxTM7 in Matlab R© to derive a state
space model directly from the first-principles model, which
we use to simulate the plant throughout this paper. The
derivation is possible using standard Matlab functions.
This state space model is linearised around the operating
mean of the set-points because the process is usually
assumed to be linear at the steady state during normal
operation (Featherstone et al., 2000) and because the mean
of the actual set-points equals the operating mean, which
can range from 40 to 60%.

By substituting (2) into (1) from time instant k−s to time
instant k to collect ‘s+1’ samples of y and u as illustrated
in Fig. 1, we have

y(k − s)
y(k − s+ 1)

...
y(k)

−H


u(k − s)

u(k − s+ 1)
...

u(k)

 = Wx(k − s) (3)

where s denotes delay, and H and W are given by

H =


D 0 · · · 0
CB D · · · 0

...
...

. . .
...

CAs−1B CAs−2B · · · D

 (4)

W =


C
CA

...
CAs

 (5)

To remove the non-measurable states, x(k − s), p ∈
Rn(s+1) can be chosen such that

pTW = 0

In turn, (3) becomes

pTY(k) = pTHU(k) (6)

where
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Fig. 1. Parity relation based residual generation

Y(k) =


y(k − s)

y(k − s+ 1)
...

y(k)

 (7)

U(k) =


u(k − s)

u(k − s+ 1)
...

u(k)

 (8)

leading to an equation for the residual, r(k) ∈ R1 as
follows:

r(k) = pTY(k)− pTHU(k) (9)

However, (1) and (2) neglect unknown inputs, which
include faults, noise, and disturbances. For the equations
to approximate the process more closely, they can be
modified to include the unknown inputs as follows:

x(k + 1) = Ax(k) + Bu(k) + R1f(k) + d(k)

y(k) = Cx(k) + Du(k) + R2f(k) (10)

where f(k) ∈ Rn denotes the fault vector and the fault
distribution matrices R1 and R2 represent the influence of
faults on the plant. These matrices can be determined if
one has defined which faults need to be diagnosed. d(k) can
represent any other unknown inputs such as disturbances
and modelling errors as follows:

d(k) = ∆Ax(k) + ∆Bu(k) + Ed̃(k)

(11)

where E is a distribution matrix and d̃(k) is the dis-
turbance vector. ∆A and ∆B are the parameter errors
or variations that represent process-model mismatch. Al-
though, the noise term has been neglected here to simplify
the algebra, it needs to be incorporated if the noise is
significant when compared to the faults and disturbances
and if the noise distribution matrix can be approximated.

Subsequently, (3) can be modified to

Y(k)−HU(k) = Wx(k − s) + LN(k) + MF(k) (12)

where

N(k) =


d(k − s)

d(k − s+ 1)
...

d(k)

 (13)

F(k) =


f(k − s)

f(k − s+ 1)
...

f(k)

 (14)

where L has a similar form to H in which {B,D} are
replaced by {In,0n,n}, where 0n,n is the n-by-n zero



matrix and In is the n-by-n identity matrix. When B is
not a square matrix, zeros are appended below or to the
right of In appropriately. Similarly, M is the same as H
except that {B,D} are replaced by the fault distribution
matrices, {R1,R2}.
Substituting (12) into (9), the equation for the residual
becomes

r(k) = pTZX(k) + pTMF(k)

where

Z = [WL] (15)

X(k) =

[
x(k − s)
N(k)

]
(16)

Subsequently, two performance indices can be defined as
follows:

J1 =
∥∥pTZ

∥∥
2

(17)

Jmax
2 =

∥∥pTM
∥∥
2

(18)

where ‖.‖2 denotes L2 norm. Maximising Jmax
2 is equiva-

lent to minimising

J2 = −
∥∥pTM

∥∥
2

(19)

Finally, by minimising J1 and J2, the residual can be-
come sensitive to faults but insensitive to disturbances
and modelling errors, which is the desired property of
the residuals for FDD. The multi-objective optimisation
technique used to minimise both performance indices at
the same time utilises a genetic algorithm and is presented
in the following section.

If enough information is given to determine ∆A, ∆B, and
E in (11), these matrices can be incorporated into (10). If
these matrices could be determined perfectly, the residual
r(k) would be zero. However, these matrices cannot be
determined for most real-life situations. Therefore, we
also do not incorporate these matrices in this paper.
More detailed discussion on determining the disturbance
matrices can be found in Chapter 5 of Chen and Patton
(1999).

3. MULTI-OBJECTIVE OPTIMISATION

A combination of the method of inequalities, the moving-
boundaries algorithm, and a genetic algorithm is exploited
for solving the multi-objective optimisation problem pre-
sented in Section 2.

3.1 Method of Inequalities

The method of inequalities transforms the problem of the
minimisation or maximisation of the performance indices
to the problem of the satisfaction of a set of inequalities.
That is, the problem becomes searching for a parameter
set that satisfies the following inequalities:

Ji(p) ≤ εi (20)

where εi (i = 1, 2) is the bound on the performance index,
Ji(p), chosen by the designer. By restricting or relaxing
the bound εi, the designer can place a different emphasis.
If J∗

1 (p) and J∗
2 (p) are the minimum values achieved, the

designer should define εi (i = 1, 2) as

J∗
i (p) ≤ εi (21)

3.2 Moving-boundaries Algorithm

To help solving the design problem presented above, Za-
kian and Al-Naib (1973) suggest an algorithm which they
call the moving boundaries algorithm. The performance
indices are first normalised as follows:

φi(p) = Ji(p)/εi (22)

In turn, the problem becomes satisfying

φi(p) ≤ 1 (23)

To solve (23), let Pi be the parameter that satisfies the ith

performance index

Pi = {p : φi(p) ≤ 1} (24)

and P be the parameter that satisfies both performance
indices

P =
{
p :

2
max
i=1
{φi(p) ≤ 1}

}
(25)

The search for an optimal P can be achieved by solving
the following optimisation problem:

min
{

2
max
i=1
{φi(p)}

}
≤ 1 (26)

In order to solve (26), let Pk be the parameter at step k,
and define

Pk
i =

{
p : φi(p) ≤ ∆k

}
(27)

where

∆k =
2

max
i=1

{
φi(p

k)
}

(28)

Now, let the problem become finding a new parameter p
that reduces the largest performance index ∆k such that

∆k+1 ≤ ∆k (29)

The optimisation process terminates either when ∆k is
less than 1 or when ∆k cannot be reduced further. If
∆k cannot be reduced further and persists being larger
than 1, the appropriate bound should be relaxed. The
most difficult part of this process is the provision of a
trial parameter Pk+1 given Pk. To solve this problem,
many methods have been suggested since Zakian and Al-
Naib (1973) introduced this technique, but especially the
incorporation of a genetic algorithm has been proven to
be effective and straightforward (Konak et al., 2006) and
thus is a popular choice for multi-objective optimisation
problems.

3.3 Multi-objective optimisation via Genetic Algorithm

This paper assumes that the readers are familiar with
genetic algorithms – detailed introduction to genetic algo-
rithms can be found in books and papers such as Frenzel
(1993)

The multi-objective optimisation procedures that utilise
the combination of the method of inequalities, the moving
boundaries algorithm, and a genetic algorithm for satis-
fying the performance indices are briefly summarised as
follows:

Step 1: Generation of Initial Population The genetic
algorithm generates an initial population. The size of the
population is chosen by the designer.

Step 2: Evaluation The fitness functions (22) are eval-
uated using the population from Step 1. A score is then
given using (28).



Step 3: Reproduction Using “ranking”, which is one of
the available options (Frenzel, 1993), new children are
created.

Step 4: Elitism A certain percentage of individuals in the
current generation with the lowest fitness values are se-
lected as “elites” and are passed on to form the population
for the next generation. This stage ensures that the best
individuals are not lost, but it can also increase the chance
of being dominated by the elite individuals prematurely.

Step 5: Recombination Using “scattering”, which is one
of the available options, cross-over children are created.
This stage is motivated by the assumption that the best
solution is contained in the population as a whole rather
than in each individual and thus can be found by combin-
ing individuals.

Step 6: Mutation Mutation children are created by ran-
domly changing the genes of parents’ individuals. We em-
ploy the Gaussian distribution to add a random vector to
the parents. This stage is motivated by the probability
that the initial random population did not contain all
the information necessary to solve the problem and also
that the individuals that were not allowed to reproduce
offspring during the previous stages may have had some
information necessary to solve the problem.

Step 7: Termination Checking Step 2 to 6 are repeated
until either the following stopping criteria, ∆k ≤ 1, has
been met or it cannot be minimised further, in which case
εi (i = 1, 2) should be relaxed.

3.4 Tuning of the genetic algorithm

In order to execute the genetic algorithm, the Genetic
Algorithm and Direct Search ToolboxTM2 in Matlab R©
was utilised. For all the simulations illustrated in Sections
4 and 5, the tuning parameters were set as follows: pop-
ulation size: 20, number of generations: 100, reproduction
method: ranking, elite count: 2 out of 20, cross-over frac-
tion: 14 out of 20, cross-over function: scattering, mutation
function: Gaussian, mutation fraction: 4 out of 20.

4. FAULT DETECTION

Having minimised both performance indices J1 and J2
in (17) and (19) at the same time using the multi-
objective optimisation technique summarised in Section
3, the resulting FD system should produce a residual
sensitive to faults but insensitive to disturbances. To
assess the performance of this FD system, it has been
applied to the first-principles model (Hur et al., 2008),
which has been used to simulate the plant throughout this
paper. Three of the simulations we have conducted are
summarised as follows. We assume that only one fault or
disturbance can occur at any time.

• Sensor fault : The sensor measurements are perturbed
by ±15% from 2000s
• Disturbance 1 : Mass flow rate of polymer flowing into

the die (Hur et al., 2008) are perturbed by ±10% from
2000s
• Disturbance 2 : Fast-roll speed is perturbed by ±10%

from 2000s
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Fig. 2. Upper plot: residual when fault occurs at 2000s
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upper plot with a different scale
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Fig. 3. FDD via Multiple Residual Generators

Distinguishing faults from disturbances is often controver-
sial. Therefore, we define anything that can be rejected
by the controller eventually as a disturbance and anything
else as a fault. Furthermore, we assume that the plastic
film is divided into 10 lanes in this paper (Hur et al., 2008).

Fig. 2 depicts the results for all these scenarios with one
figure for comparison. The upper and lower plots are the
same but have different y-axes. The results show that the
residual is sensitive to the fault but insensitive to both
disturbances, which is the desired property of a FD system.
Although, this FD system is capable of detecting faults
successfully, fault diagnosis has not been addressed. A
FDD system conducts fault diagnosis after fault detection
and is presented in the following section.

5. FAULT DETECTION AND DIAGNOSIS

The development of a FDD system is presented in this
section. This FDD system is the same as the FD system
demonstrated in Section 4 but has more than one residual
generator, each sensitive to one specific fault, as shown in
Fig. 3. Moreover, to make the scenarios more realistic, the
mass flow rate of polymer flowing into the die is perturbed
by ±10% at all times – this is regarded as a disturbance
which the FDD system requires to be insensitive to.
Although this disturbance is persistent, we assume that
only one fault occurs at any time
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Fig. 4. Residuals when sensor fault occurs at 1500s
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Fig. 5. Residuals when 3rd die bolt becomes stuck at 1500s

• Sensor fault : The sensor measurements are perturbed
by ±15% from 1500s
• Actuator fault 1 : The third die bolt becomes stuck

from 1500s
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Fig. 6. Residuals when 5th die bolt becomes stuck at 1500s
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Fig. 7. Residuals when 8th die bolt becomes stuck at 1500s

• Actuator fault 2 : The fifth die bolt becomes stuck
from 1500s

• Actuator fault 3 : The eighth die bolt becomes stuck
from 1500s



If each residual generator can be made to be sensitive to
one fault only, the faults can be diagnosed adequately. For
each residual generator to produce a residual sensitive to
a specific fault, each residual generator requires to have
specific fault distribution matrices, R1 and R2 in (10).
Consequently, each residual generator will have a different
Z and M in (17) and (19), and p will therefore be different
for each residual generator.

For the first residual generator in Fig. 3 to be sensitive to
the sensor fault, we approximate R1 and R2 as follows:

R1 = 0

R2 = In (30)

This intuitive approximation is widely accepted since sen-
sor faults tend to affect the output equation without af-
fecting the states (Chiang et al., 2001). The three residual
generators are constructed to be sensitive to a fault occur-
ring at a specific actuator. This is to demonstrate that the
FDD system can be designed for a specific actuator among
a few hundred actuators, thereby indicating which specific
actuator has become faulty. However, since the sensing
system employed by the first-principles model is a scanning
gauge rather than an array of sensors (Featherstone et al.,
2000), only one residual generator is constructed for the
sensor fault.

For the residual generator to be sensitive to an actuator
fault, we approximate R1 and R2 as follows:

R1 = B

R2 = D (31)

where D is assumed to be a zero matrix in this paper.
This approximation is also widely accepted as the actuator
faults affect the input vector u(k) directly. Therefore, (10)
becomes

x(k + 1) = Ax(k) + B(u(k) + f(k)) + d(k)

y(k) = Cx(k) + D(u(k) + f(k)) (32)

For the residual generator to be sensitive to the ith

actuator fault, we let every entry of the matrix R1 in
(31) be a zero except ith column – the ith column of R1

remains the same as the ith column of B. In this manner,
the remaining three residual generators are constructed
to be sensitive to the 3rd, 5th, and 8th actuator faults –
3, 5, and 8 have been chosen randomly to demonstrate
that a residual generator can be designed for a specific
actuator among as many as a few hundreds to indicate
which actuator is faulty.

The results are depicted in Figs. 4, 5, 6, and 7. The thresh-
olds were manually set at 2 for the first residual generator
and 50 for the rest. If any of these thresholds is violated, a
fault is detected. A fault can then be diagnosed by checking
which threshold has been violated. Although only four
residual generators were constructed in this paper, the
number of residual generators will be considerably high
in real-life depending on the number of faults required
to detect and diagnose. From the experience, the plant
personnel would know the types of faults which need to be
detected and diagnosed. Using this information, the num-
ber and types of the residual generators can be determined
appropriately. For good FDD, the design of accurate fault
and disturbance matrices can play an important role.

6. CONCLUSION

This paper has reported on the design of a FDD sys-
tem and its application to a first-principles model of a
plastic film extrusion process. This model has been used
to simulate the plant throughout this paper. The FDD
system is based on the parity relations and thus requires
solving a multi-objective optimisation problem. A genetic
algorithm, which is an evolutionary algorithm, has been
utilised for solving this multi-objective optimisation prob-
lem. This is a novel approach as an analytical method
is usually utilised for solving this multi-objective opti-
misation problem. The simulation results in Section 4
demonstrated that the FDD system is sensitive to faults
but insensitive to disturbances at the same time, which is
the desired fault detection property. In addition to fault
detection, the simulation results in Section 5 showed that
fault diagnosis could also be conducted successfully. The
design can be used for other kinds of processes, such as
papermaking and steel-rolling as long as a reference model
can be identified in the state space form.
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