Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

An L1 positioned dust cloud as an effective method of space-based geoengineering

Bewick, R. and Sanchez, J.P. and McInnes, C.R. (2010) An L1 positioned dust cloud as an effective method of space-based geoengineering. In: International Astronautical Congress, IAC 2010, 2010-09-27 - 2010-10-01.

[img]
Preview
PDF (strathprints027439.pdf)
strathprints027439.pdf

Download (958kB) | Preview

Abstract

In this paper a method of geoengineering is proposed involving clouds of dust placed in the vicinity of the L1 point as an alternative to the use of thin film reflectors. The aim of this scheme is to reduce the manufacturing requirement for space-based geoengineering. It has been concluded that the mass requirement for a cloud placed at the classical L1 point, to create an average solar insolation reduction of 1.7%, is 2.93x109 kg yr-1 whilst a cloud placed at a displaced equilibrium point created by the inclusion of the effect of solar radiation pressure is 8.87x108 kg yr-1. These mass ejection rates are considerably less than the mass required in other unprocessed dust cloud methods proposed and, for a geoengineering period of 10 years, they are comparable to thin film reflector geoengineering requirements. It is envisaged that the required mass of dust can be extracted from captured near Earth asteroids, whilst stabilised in the required position using the impulse provided by solar collectors or mass drivers used to eject material from the asteroid surface.