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It is one hundred years since Mikowski and Abraham first gave rival expressions
for the momentum of light in a material medium. At the single-photon level, these
correspond, respectively, either to multiplying or dividing the free-space value (~k)
by the refractive index (n). The debate this work started has continued to the
present day, punctuated by the occasional publication of “decisive” experimental
demonstrations supporting one or other of these values. We review the compelling
arguments made in support of the Minkowski and Abraham forms and are led to the
conclusion that both momenta are correct. We explain why two distinct momenta
are needed to describe light in a medium and why each appears as the natural, and
experimentally observed, momentum in appropriate situations.
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1. Introduction: the Abraham-Minkowski dilemma

It has long been appreciated that light has mechanical properties. Indeed Maxwell
(1891) presented a simple calculation of the pressure exerted by sunlight at the sur-
face of the earth. It was Poynting (1884) who determined that it is the cross product
of the electric and magnetic fields that determines the flux of electromagnetic en-
ergy. For light propagation in vacuum, there is no difficulty in also identifying this
cross-product with the density of electromagnetic momentum. Within a medium,
however, we have a choice to make between the electric and displacement fields (E
and D) and the magnetic field and the magnetic induction (H and B). Poynting’s
theorem tells us that the flux of energy is E ×H, but there are two entirely rea-
sonable and rival forms for the corresponding density of momentum. These are the
Minkowski (1908) momentum density gMin = D×B and the Abraham (1909, 1910)
momentum density gAbr = E×H/c2. The problem of determining which momen-
tum is “correct” is the famous Abraham-Minkowski dilemma. This is not the place
to review the large literature devoted to the this problem; instead, we recommend
to the interested reader the review by Brevik (1979) and the more recent one of
Pfeifer et al (2007).

It is not necessary to quantize the electromagnetic field in order to appreciate
the problem, but it is helpful to understand it in terms of the properties of a
single photon of angular frequency ω. We can do this by means of a simple scaling
argument. The total electromagnetic energy within our volume is simply that of
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the photon (~ω): ∫
dV

1
2

(D ·E + B ·H) = ~ω . (1.1)

This energy is (on average) shared equally between the electric and magnetic parts
so that ∫

dV
1
2
D ·E =

~ω
2

=
∫
dV

1
2
B ·H . (1.2)

If we consider, for simplicity, a linear isotropic and homogeneous medium with
relative permittivity ε and permeability µ then we are led to∫

dV gMin = ~kn (1.3)∫
dV gAbr =

~k
n
, (1.4)

where k is the wavevector in vacuum (with magnitide ω/c) and n =
√
εµ is the

refractive index of the medium. At its simplest, therefore, Minkowski would assert
that the momentum of a photon in a medium is its value in vacuum multiplied by
the refractive index, while Abraham would have us believe that it is the vacuum
value divided by the refractive index. In dispersive media, the situation is a bit
more complicated in that we need to discriminate between phase and group indices
(Garrison & Chiao 2004, Milonni & Boyd 2005, Loudon et al 2005, Bradshaw et al)
but, in the interests of simplicity, we shall leave this feature until section 6.

(a) Argument in favour of Abraham

Perhaps the most direct way to calculate the momentum of a photon in a
medium is to use the Newtonian idea that the centre of mass (or more precisely
energy) of an isolated system undergoes uniform motion (Einstein 1906). We follow
the analysis of Balazs (1953) and apply this idea to a single photon and a block
of transparent material initially at rest. We let the photon travel in the z-direction
and are then interested in this component of the electromagnetic momentum. The
photon has energy ~ω and propagates with speed c. If the block has mass M then
the total energy is

E = Mc2 + ~ω . (1.5)

When the photon enters the medium, its speed slows to c/n and, as a result, it
takes the time T = nL/c to travel through the medium, where L is the thickness of
the block. It follows that, on leaving the block, the photon has travelled a distance
(n − 1)L less than it would have done had it been travelling in vacuum. This
deviation from uniform motion can only be made up if the block itself was displaced
in the direction of propagation of the photon by an amount ∆z while the photon
was in the medium. The centre of mass-energy moves uniformly if (Frisch 1965)

∆zMc2 = (n− 1)L~ω

⇒ ∆z = (n− 1)L
~ω
Mc2

. (1.6)

We see clearly that this displacement depends simply on the thickness of the
medium, the ratio of the photon and medium energies and the refractive index.
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In order to move the distance ∆z while the photon is in the medium, the block
must have acquired from the photon the momentum

pblock =
1
M

∆z
L(n/c)

=
(

1− 1
n

)
~ω
c
. (1.7)

Global conservation of momentum then dictates that the total momentum is ~ω/c
and hence that

pphoton =
~ω
cn

, (1.8)

which is the value obtained by Abraham’s prescription.
We have used only the conservation of momentum and the uniform motion of

the centre of mass-energy in deriving our result and it is difficult to see how any
component of our derivation could seriously be open to question.

(b) Argument in favour of Minkowski

The first thing to be said in support of the Minkowski momentum is that it is
“natural” in that the wavevector in a medium is greater than in vacuum by the
refractive index and hence the Minkowski single-photon momentum (1.3) is simply
~ multiplied by the wavevector in the medium. There are also, however, at least
two simple physical arguments in support of the Minkowski momentum.

The first, due to Padgett (2008), is based on single-slit diffraction. A plane wave
propagating in the z-direction towards a single-slit in the x-y plane will undergo
diffraction and produce a characteristic interference pattern in the far field. We can
determine the width of the central peak of this pattern by a simple application of
the Heisenberg uncertainty principle. If the slit has width ∆x then the uncertainty
principle requires that the field after the slit has a spread of momenta in the x-
direction of ∆px ≈ ~/∆x. It then follows that the angular spread of the central
interference peak will be

θ ≈ ∆px

pz
≈ ~

∆x
c

~ω
=

c

ω∆x
. (1.9)

If we repeat the experiment in a medium of refractive index n then we find that the
angular width of the peak is reduced by n. The momentum width ∆px is imposed
by the width of the slit, so this reduction can only arise because the momentum in
the z-direction is increased by n,

pphoton =
~ωn
c

(1.10)

which is the Minkowski momentum. A similar result can be obtained by reference
to double-slit diffraction (Brevik 1981).

Our second argument (Bradshaw et al) is a variant of an idea due to Fermi
(1932). Consider an atom of mass m with a transition at angular frequency ω0. Let
the atom be in a medium with refractive index n and moving with velocity v away
from a source of light with angular frequency ω. The atom can absorb a photon
from the beam if the Doppler-shifted frequency matches the transition frequency,
so that

ω0 ≈ ω
(

1− nv

c

)
. (1.11)

Article submitted to Royal Society



4 S. M. Barnett and R. Loudon

Let v′ denote the velocity of the atom after it has absorbed the photon. The con-
servation of energy and momentum then require that

1
2
mv′2 + ~ω0 =

1
2
mv2 + ~ω (1.12)

mv′ = mv + pphoton . (1.13)

Solving these for the photon momentum gives

pphoton =
~ωn
c

2v
v + v′

≈ ~ωn
c

, (1.14)

where we have made use of the fact that the absorption makes only a small change
to the velocity of the atom. Simple conservation laws have led us to conclude that
the photon momentum is that given by Minkowski.

These arguments in support of the Minkowski momentum are of a different
character to that made in support of the Abraham form, but they are no less
convincing for that. Both forms are well supported, therefore, and hence we have a
dilemma.

2. Experimental evidence

As theory has presented us with a dilemma, it is reasonable to seek an answer in
experiments and this idea has been pursued on a number of occasions (Jones &
Richards 1954, Ashkin & Dziedzic 1973, Walker et al 1975, Jones & Leslie 1978).
The work of Jones, Richards and Leslie confirmed that the force exerted on a mirror,
submerged in a medium was consistent with each photon in that medium having
the Minkowski momentum. The experiment of Ashkin and Dziedzic showed that the
action of a light on the surface of a liquid was also consistent with the Minkowski
momentum, although this interpretation is far from unambiguous (Gordon 1973).
The experiments of Walker et al provide evidence that is no less convincing in favour
of the Abraham form. These early experiments and the conclusions derived from
them are discussed at greater length in Brevik (1979) and Pfeifer et al (2007).

The confusing experimental situation has continued, with further experiments
seeming to support either the Minkowski or the Abraham momentum. Gibson et
al (1980) exploited the photon drag effect to measure the momentum transfer from
far-infrared radiation to free charge carriers in germanium and silicon. It each case
the observations were consistent with the Minkowski form of the optical momentum.
Campbell et al (2005) measured the recoil momentum of atoms in a dilute ultra-cold
gas, effectively performing the experiment outlined in section 1(b) above. They too
found a recoil consistent with the Minkowski form. Most recently, She et al (2008)
measured the displacement of an optical fibre due to light leaving. Their results,
although not uncontroversial (Mansuripur 2009), seem to support the Abraham
momentum.

There is an angular-momentum version of the Abraham-Minkowski dilemma,
with the Abraham angular momentum being that in free-space divided by n2 and
the Minkowski form being the same as that in free-space. An angular version of the
argument, given above, in support of the Abraham momentum supports, naturally
enough, the Abraham angular momentum (Padgett et al 2003). An experiment of
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Kristensen and Woerdman (1994), however, measured the torque on an object in
a dielectric medium. The observations gave results in support of the Minkowski
angular momentum.

Experimental work has served to confirm that the force exerted by light on
an object within a medium is consistent with the Minkowski momentum for the
light in that medium. The evidence in support of the Abraham momentum is,
perhaps, less convincing but tends to support the idea that the nett effect on a
medium due to light passing through it is consistent with the Abraham momen-
tum. Indeed it could not be otherwise! If the argument advanced in section 1(a) in
favour of the Abraham momentum were to be incorrect, then that would bring into
question uniform motion of an isolated body as expressed in Newton’s first law of
motion. Similarly, a failure of the arguments advanced in section 1(b) in favour of
the Minkowski momentum would require us to question the uncertainty principle,
momentum conservation and the Doppler effect.

It seems that there is at least some validity to both the Minkowski and the
Abraham momenta and it is for theory to explain the origins of these two momenta
and to explain why one of them appears as the “correct” momentum in a specific
situation.

3. Electromagnetic force

Our first task is to find a reliable way of determining the momentum exchange
between electromagnetic fields and a medium. Using energy and momentum den-
sities has proven to be an unreliable method for this, not least because Minkowski
and Abraham have given us different expressions for the electromagnetic energy-
momentum tensor. It is safer, therefore, to work with the force exerted on the
medium and then to use Newton’s second law of motion to relate this to a rate of
change of momentum (Loudon 2002, 2003).

The force exerted on a point dipole, with dipole moment d, is simply

F = (d · ∇) E + ḋ×B (3.1)

which follows directly from the Lorentz force law. It follows that the force density
on a dielectric (non-magnetic) medium is (Gordon 1973)

f = (P · ∇) E + Ṗ×B , (3.2)

where P is the polarization of the medium. This is not the only possible form for
the force density (Mansuripur 2004), but it has been shown that the total force
exerted is the same for all acceptable choices of this density (Barnett & Loudon
2006). The force density has been used to calculate the forces exerted on dielectric
media in a variety of arrangements (Loudon & Barnett 2006) but we concentrate
here on the calculations relevant to photon drag experiments (Loudon et al 2005).

Photon drag occurs in semiconductors and the experiments of interest were
performed in silicon and germanium. At the long wavelengths used these behave,
to a good approximation, as free carriers in a background dielectric. We can safely
assume that the carriers are responsible for the absorption and make a purely
imaginary contribution to the permittivity. The host material is responsible for the
real part. We shall assume that the medium is thick enough for our photon to be
absorbed.
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We consider a single-photon pulse with a narrow band of frequencies centred on
ω. The momentum transfer to the medium is readily calculated from the quantized
force density formed from (3.2) by quantizing the fields and integrating over space
and time. We omit the details of this calculation, which can be found in Loudon
et al (2005), and concentrate instead on the results of this calculation and their
physical significance.

The calculated momentum transfer to the free carriers is

pcarriers =
~ωn
c

. (3.3)

This value agrees with that found in experiments (Gibson et al 1980) and also
coincides with the Minkowski momentum. The calculated momentum transfer to
the host material is similarly

phost =
~ω
c

n2 − 1
2n

. (3.4)

This momentum was not observable in the experiments. Adding these two gives a
value for the total momentum

ptotal =
~ω
c

n2 + 1
2n

, (3.5)

which is the mean of the Minkowski and Abraham momenta. It is straightforward to
show that this value is precisely that required by global momentum conservation.
A photon incident on the medium, with momentum ~ω/c, will be reflected with
probability (n − 1)2/(n + 1)2 and transmitted into the medium with probability
4n/(n+ 1)2. Momentum conservation then requires that

~ω
c

= − (n− 1)2

(n+ 1)2
~ω
c

+
4n

(n+ 1)2
ptotal , (3.6)

the solution of which is (3.5).
We can also apply our method to study a weakly absorbing dielectric with n ≈ 1.

If the medium is of finite thickness then this situation coincides with that proposed
in section 1(a) in support of the Abraham momentum. We can neglect reflections at
the interfaces because n ≈ 1. Our analysis confirms that the momentum transfered
to the medium during propagation of a photon through it is

pmedium =
~ω
c

(
1− 1

n

)
, (3.7)

from which we can infer that the momentum of the photon in the medium is

pphoton =
~ω
cn

, (3.8)

in agreement with the Abraham momentum. We note that (3.7) also follows directly
from (3.4) when n ≈ 1.

It is clear that the experimental observations to date are consistent with both
the Minkowski and Abraham momenta. The momentum transfer to a body (in our
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case the charge carriers) within a medium is given by the Minkowski momentum.
The momentum of a photon travelling through a host dielectric, however, is given
by the Abraham momentum. These results have both arisen from applying the
same Lorentz force to a simple model dielectric, and confirm the validity of both
mechanical arguments proposed in sections 1(a) and 1(b). It only remains to explain
why there are two momenta and why they appear where they do.

4. The two momenta

We are not often aware of it, but we define our momentum by means of two prop-
erties. The first, which would have been familiar to Newton, is the inertial property
derived from Newton’s second law of motion. This kinetic momentum is the prod-
uct of the mass and velocity of a body. The second is most readily appreciated
by reference to quantum theory as that associated with de Broglie waves. The
canonical momentum for a quantum particle is Planck’s constant divided by its de
Broglie wavelength. More formally, the canonical momentum is that derived from
the Lagrangian, which is constructed to satisfy the canonical commutation relation

[x, p] = i~ . (4.1)

For many applications, these momenta are one and the same, but in electromag-
netism they are quite distinct. The difference can be traced to the fact that the
electric and magnetic fields depend on the frame of reference.

The form of the canonical momentum depends, in fact, on the gauge and the
form of the matter-field coupling employed (Power 1964, Craig & Thirunamachan-
dran 1998). In the electric dipole form, most appropriate for our systems, we find
that for a single point dipole (Baxter et al 1993, Leonhardt 2006, Hinds & Barnett
2009)

pkinetic = pcanonical + d×B . (4.2)

This difference arises from the Röntgen interaction, which is a manifestation of the
electric field derived from a magnetic field in a moving frame of reference (in this
case, that of the dipole). More generally, for an object with electric dipole moment
d and magnetic dipole moment m, we find (Hinds & Barnett 2009)

pkinetic = pcanonical + d×B− m×E
c2

. (4.3)

If we add together the momenta of all the dipoles in our medium then we find

pmedium
kinetic − pmedium

canonical =
∫
dV

(
P×B− M×E

c2

)
=

∫
dV

(
D×B− E×H

c2

)
=

∫
dV (gMin − gAbr) . (4.4)

We note that the total momentum is the same, whether we are speaking of the
kinetic or the canonical momentum:

pmedium
canonical +

∫
dV gMin = pmedium

kinetic +
∫
dV gAbr (4.5)
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and, moreover, this total momentum is a conserved quantity.
Clearly we can identify the Abraham momentum as the kinetic momentum of the

light in the medium, while the Minkowski momentum is its canonical momemtum.

5. A dilemma resolved: the two natural momenta

We have determined that the Abraham momentum is the kinetic momentum of
the light and that the Minkowski momentum is its canonical momentum. It only
remains to show how these identifications determine the conditions under which
either one of them is the natural momentum.

(a) The Abraham or kinetic momentum

The argument put forward in section 1(a) depends on the displacement of a
medium due to the propagation through it of a photon. This displacement is a
consequence of a velocity imparted to the medium and hence a kinetic momentum.
Global momentum conservation of this kinetic leads us to the kinetic momentum
of the photon which is, as we have seen, the Abraham momentum.

(b) The Minkowski or canonical momentum

We proposed, in section 1(b), three arguments in support of the Minkowski
momentum: that it is natural, that it was suggested by diffraction and that it is
required by momentum conservation for absorption by a moving atom. We address
each of these in turn.

It will be recalled that de Broglie identified the wavelength of a quantum body
as h/p. This, in turn, led Schrödinger to express the momentum as

p = −i~∇ . (5.1)

We recognise this as the canonical momentum and it is natural, therefore, that
the canonical momentum, and therefore the Minkowski momentum, should be h/λ,
where λ is the wavelength in the medium.

Padgett’s diffraction argument is based on the Heisenberg uncertainty principle
and hence on the canonical commutation relation (4.1). It is for this reason that
the canonical, or Minkowski, momentum is the one that appears. Equivalently, we
can simply note that diffraction depends on the wavelength of the light and that
this, as noted above, is inversely proportional to the Minkowski momentum.

In order to address the momentum of a body immersed in a dielectric host,
we first recall the role of the canonical momentum in generating translations. The
commutation relation (4.1) implies that

[f(x), pcanonical] = i~
∂

∂x
f(x) (5.2)

which means, in turn, that the canonical momentum is the generator of translations.
The mathematical statement of this is the unitary transformation

exp
(
ia

~
pcanonical

)
f(x) exp

(
− ia

~
pcanonical

)
= f(x+ a) , (5.3)
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where a is a constant.
In the same way we find that the Minkowski momentum generates translations

of the electromagnetic field in that

exp
(
− i

~
a ·
∫
dV gMin

)
A(r) exp

(
i

~
a ·
∫
dV gMin

)
= A(r + a) , (5.4)

where A is the vector potential in the Coulomb gauge and a is a constant vector.
For a body immersed in our medium it is precisely this translation, relative to the
medium, that is important. It is for this reason that it is the canonical or Minkowski
momentum that appears.

6. Dispersion: a final detail

One remaining issue is the forms of the two momenta in a dispersive medium, in
which there are two refractive indices: the phase index

np =
ck

ω
(6.1)

and the group index

ng = c

(
dω

dk

)−1

. (6.2)

It is straightforward to show that the single-photon Abraham momentum is (Gar-
rison & Chiao 2004, Loudon et al 2005)

pAbr =
~ω
cng

. (6.3)

The group index, of course, determines the speed at which the photon propagates
through the medium. Our argument in support of the Abraham momentum relies
on this speed and so it is entirely reasonable that it is the group index that appears.
A careful calculation based on the Lorentz force law confirms this (Loudon et al
2005).

The wavevector has magnitude npω/c and it is reasonable, therefore, to expect
that the canonical or Minkowski momentum should have the value

pMin =
~ωnp

c
. (6.4)

This conclusion is also supported by a calculation based on the Lorentz force
(Loudon et al 2005), which shows that this is the momentum transfered to a body
immersed in the medium. There is a problem, however, with this value for the
Minkowski momentum as

D×B = εµ
E×H
c2

= n2
p

E×H
c2

(6.5)

and this suggests that, if (6.3) is the Abraham momentum then the Minkowski
momentum should be ~ωn2

p/(cng) (Garrison & Chiao 2004, Milonni & Boyd 2005).
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The resolution of this puzzle lies in the roles of the kinetic and canonical mo-
menta. We can meaningfully evaluate the kinetic or Abraham momentum by taking
the expectation value of gAbr. The role of the canonical momentum is to generate
translations. however, and its important property, therefore, is the translation (5.3)
or, equivalently, the commutation relation[∫

dV gMin, Aj(r)
]

= i~∇Aj(r) . (6.6)

Quantization of the field inside a medium produces polaritons and, importantly, a
dispersion curve with more than one frequency for each wavevector (Kittel 1987).
Each of these branches contributes to this commutation relation by its own value
of np/ng. The total for each value of k, however, is (Huttner et al 1991, Huttner &
Barnett 1992) ∑

i

np(ωi)
ng(ωi)

=
∑

i

vg(ωi)
vp(ωi)

=
∑

i

k

ωi

dωi

dk
= 1 . (6.7)

The Minkowski momentum is the canonical momentum,
∫
dVD×B, but its single-

photon value is determined by the spatial shift of the field rather than its single-
photon expectation value. The Abraham and Minkowski momenta in a dispersive
medium are, indeed, as given in (6.3) and (6.4).

7. Conclusion

We have described the two rival momentum densities for the light in a medium and
presented, as simply as possible, the compelling physical arguments in favour of each
of them. Exisiting experimental evidence strongly supports the Minkowski momen-
tum as that transfered to a body within a host medium. There is also experimental
evidence, perhaps not quite so strong, in support of the Abraham momentum as
that part of the momentum not transferred to the medium during the passage of
the photon through it. Calculations based on the Lorentz force reveal circumstances
in which either momentum is the appropriate one and, importantly, verify the va-
lidity of the simple arguments made in favour of both the Abraham and Minkowski
momenta.

The resolution of the Abraham-Minkowski dilemma lies in the realisation that
electromagnetism recognises two distinct momenta, the kinetic momentum and the
canonical momentum. The total momentum is conserved, whichever momentum
we use, and this leads us to identify, unambiguously, the Abraham and Minkowski
momenta, respectively, as the kinetic and canonical momenta for the light.

Finally, we note that a number of momenta have been proposed as rivals to
those of Abraham and Minkowski (Brevik 1979), with the aim of thereby resolving
the conflict. We may hope that in demonstrating, clearly, the need for and natures
of both the Abraham and Minkowski momenta, we may also have removed the need
for these and further rival momenta.
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Miles Padgett for kindly reading the mansuscript before submission and for making a
number of helpful suggestions. This work was supported by the Engineering and Physical
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