Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Plasma wakes driven by neutrinos, photons and electron beams

Bingham, R. and Silva, L.O. and Mendonça, J.T. and Shukla, P.K. and Mori, W.B. and Serbeto, A. (2007) Plasma wakes driven by neutrinos, photons and electron beams. International Journal of Modern Physics B, 21 (3-4). pp. 343-350. ISSN 0217-9792

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

There is considerable interest in the propagation dynamics of intense electron and photon neutrino beams in a background dispersive medium such as dense plasmas, particularly in the search for a mechanism to explain the dynamics of type II supernovae. Neutrino interactions with matter are usually considered as single particle interactions. All the single particle mechanisms describing the dynamical properties of neutrino's in matter are analogous with the processes involving single electron interactions with a medium such as Compton scattering, and Cerenkov radiation etc. However, it is well known that beams of electrons moving through a plasma give rise to a new class of processes known as collective interactions such as two stream instabilities which result in either the absorption or generation of plasma waves. Intense photon beams also drive collective interactions such as modulational type instabilities. In both cases relativistic electron beams of electrons and photon beams can drive plasma wakefields in plasmas. Employing the relativistic kinetic equations for neutrinos interacting with dense plasmas via the weak force we explore collective plasma streaming instabilities driven by Neutrino electron and photon beams and demonstrate that all three types of particles can drive wakefields.