Modelling of free-electron maser based on two-dimensional distributed feedback
Konoplev, I.V. and Phelps, A.D.R. and Cross, A.W. and MacInnes, P.; (2007) Modelling of free-electron maser based on two-dimensional distributed feedback. In: 2007 Joint 32nd International Conference on Infrared and Millimeter Waves/15th International Conference on Terahertz Electronics. IEEE, New York, USA, pp. 830-833. ISBN 978-1-4244-1438-3
Full text not available in this repository.Request a copy from the Strathclyde authorAbstract
The use of two-dimensional (2D) distributed feedback has been considered as a method of providing spatially coherent radiation from an oversized annular electron beam used to drive a ITEM based on a coaxial two-mirror cavity. The operation of the FEM when the interaction space is formed by a 2D Bragg input and a 1D Bragg output mirror separated by a regular section of the coaxial waveguide has been studied using the 3D Particle-in-Cell code MAGIC. The properties of the FEM are analyzed and discussed. The single mode operation of the FEM that uses a coaxial cavity is demonstrated and the design of a 2D Bragg FEM-oscillator based on a high-current accelerator is discussed.
Creators(s): |
Konoplev, I.V., Phelps, A.D.R. ![]() ![]() ![]() | Item type: | Book Section |
---|---|
ID code: | 26819 |
Keywords: | free electron masers, distributed Bragg reflectors, distributed feedback oscillators, numerical simulations, Physics |
Subjects: | Science > Physics |
Department: | Faculty of Science > Physics |
Depositing user: | Miss Leonie Airley |
Date deposited: | 18 Aug 2010 14:54 |
Last modified: | 01 Jan 2021 06:34 |
URI: | https://strathprints.strath.ac.uk/id/eprint/26819 |
Export data: |