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Orbital dynamics of Earth-orbiting ‘smart dust’ spacecraft 
under the effects of solar radiation pressure and 

aerodynamic drag 

Camilla Colombo1 and Colin McInnes2 
Advanced Space Concepts Laboratory, University of Strathclyde, Glasgow, UK, G1 1XJ 

This paper investigates how the perturbations due to asymmetric solar radiation 
pressure, in presence of Earth’s shadow, and atmospheric drag can be balanced to obtain 
long-lived Earth centered orbits for swarms of SpaceChips, without the use of active control. 
The secular variation of Keplerian elements is expressed analytically through an averaging 
technique. Families of solutions are then identified where a Sun-synchronous apse-line 
precession is achieved passively. The long-term evolution is characterized by librational 
motion, progressively decaying due to the non-conservative effect of atmospheric drag. 
Therefore, long-lived orbits can be designed through the interaction of energy gain from 
asymmetric solar radiation pressure and energy dissipation due to drag. In this way, the 
short life-time of high area-to-mass spacecraft can be greatly extended (and indeed selected). 
In addition, the effect of atmospheric drag can be exploited to ensure the end-of life decay of 
SpaceChips, thus preventing long-lived orbit debris. 

Nomenclature 
A  = Spacecraft cross-section, m2. 
A  = Effective cross-section for radiation pressure, m2. 

DragA  = Effective cross-section for drag, m2. 

a  = Acceleration vector in Cartesian coordinates, km/s2. 
a = Semi-major axis, km. 

SRPa  = Characteristic acceleration due to solar radiation pressure, km/s2. 

Dc  = Drag coefficient. 

lightc  = Light speed, km/s. 

Rc  = Reflectivity coefficient. 

E = Eccentric anomaly, rad. 
e = Eccentricity. 
f = True anomaly, rad. 
H = Atmospheric scale height, km. 
h = Orbit altitude, km. 

0h  = Atmosphere reference altitude, km. 

ph  = Perigee altitude, km. 

kI  = Modified Bessel functions of the first kind of order k and argument c. 

i = Inclination, rad. 

LLkep  = Keplerian vector of initial conditions for long-lived orbits. 

m = Spacecraft mass, kg. 
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Earth-Sunn  = Orbital angular velocity of the Earth about the Sun, rad/s or deg/day. 

p = Semilatus rectum, km. 

SRp  = Solar radiation pressure, N/m2. 

ER  = Mean radius of Earth, km. 

r  = Position vector in Cartesian coordinates, km. 
r = Orbit radius, km. 

ar  = Apogee radius, km. 

pr  = Perigee radius, km. 

T = Orbital period, s or days. 
v  = Velocity vector in Cartesian coordinates, km/s. 

relv  = Velocity relative to the rotating atmosphere, km/s. 

W = Energy flux density of the Sun at 1 AU, W/m2. 
w = Weight parameter. 
  = Obliquity of the ecliptic with respect to the equator, rad. 
  = Anomaly of the ascending node, rad. 
  = Anomaly of the pericentre, rad or deg. 

Sun  = Ecliptic longitude of the Sun-Earth line, rad or deg. 

  = Gravitational constant, km3/s2. 

  = Atmosphere density at height h, kg/m3. 

0  = Atmosphere reference density, kg/m3. 

Earth  = Rotational angular velocity of the Earth, rad/s or deg/day. 

 
  = Finite variation of  . 
  = Norm of the vector  . 

  = OR condition. 
 

Subscripts 
a = Semi-major axis. 
Drag = Due to atmospheric drag. 
e = Eccentricity. 
Earth = Relative to the Earth. 
ecl, enter  = Entry into eclipse. 
ecl, exit = Exit from eclipse.  
r = Component in the radial direction. 
p = Relative to the perigee. 
Sun = Relative to the Sun. 
SRP = Due to solar radiation pressure. 
T =  Transposed. 
up = Upper value. 
  = Component in the transverse direction. 
  = Anomaly of the pericentre. 
2  = Value computed over one revolution of true anomaly. 
* = Value at the bifurcation. 
 
Superscripts 
  = Unit vector. 
‒ = Secular term. 
 
Acronyms 
AU = Astronomical Unit. 
MEMS = MicroElectroMechanical Systems. 
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RHS = Right-Hand Side. 
SRP = Solar Radiation Pressure. 
 
Constants 
AU = 149597870.7 km. 

lightc  = 299  km/s. 792.458

ER  = 6378.16 km. 

W = 1367 W/m2. 
  = 23.43928111 deg. 

Earth  =  km3/s2. 53.986004461921757 10

Sun  =  km3/s2. 111.3272448769 10
 

I. Introduction 

Advances in miniaturization are enabling the development of small ‘Smart Dust’ devices with sensing, 
computing and communication capabilities. Current concepts for functional devices have been designed by 
exploiting existing capabilities, such as satellite-on-a-chip [1-2]. These developments offer the possibility of 
fabricating vast numbers of micro-spacecraft for use in swarm applications and with launch at low cost. 
Significantly smaller MEMS (microelectromechanical systems) devices with sensing, computing, bi-directional 
communication and micro-power sources are currently in laboratory development for terrestrial applications with a 
displaced volume of order 10 mm3 [3]. Atchison and Peck designed a passive, sun-pointing millimeter solar sail, 
whose bus is constituted by a 1 cm square and 25 μm thick silicon microchip. The proposed design integrates solar 
cells and communications in a solid state device [4]. 

The deployment of vast numbers of such ‘SpaceChips’ will enable future missions, such as global sensor 
networks for Earth observation and communications, distributed space missions for multi-point, real-time sensing 
for space science (space weather, geomagnetic physics, reflectometry), interplanetary exploration in support of 
conventional spacecraft, or deployment in the vicinity of a large spacecraft for diagnostic or environmental detection 
purposes. The considerably smaller dimensions of SpaceChips envisage their deployment in orbit from a CubeSat or 
as piggy-back on a conventional spacecraft, thus allowing significant launch cost savings. 

As an early example of a SpaceChip-scale swarm, project West Ford in 1963, placed a ring of  copper 
dipole antennas (1.78 cm long needles, with a diameter of 17.8 μm) into orbit to allow global radio communication 
[5]. The motion of the individual dipoles, from dispensing to final re-entry through the atmosphere was modeled and 
observed. 

84.8 10

The realization of these new concepts requires an understanding of orbital dynamics at extremes of spacecraft 
length-scale. The significantly higher area-to-mass ratio of such devices, with respect to conventional spacecraft, 
allows new insights into orbital dynamics since perturbations such as solar radiation pressure (SRP) and 
aerodynamic drag become dominant with respect to the Earth’s gravity. Rather than counteracting these disturbances 
to the natural Keplerian motion, the interaction physics at small length-scales can be exploited and passive methods 
for orbit design can be envisaged without the use of active orbit control. This paper presents an analysis of long-
lived orbits for SpaceChips which uses the energy input from asymmetric solar radiation pressure to offset the 
energy dissipation of atmospheric drag. 

The effect of natural perturbations on small particles has been studied extensively in the vast literature on the 
dynamics of cosmic dust in the solar system whose motion is perturbed by solar gravity, solar radiation pressure, 
Poynting-Robertson drag force, planetary oblateness and electromagnetic forces [6-10]. The effect of solar radiation 
pressure, zonal and tesseral harmonics of the Earth’s gravitational potential, luni-solar third body perturbations, 
atmospheric drag on high area-to-mass ratio objects are also of particular interest to explain the long-term dynamical 
evolution of small debris particles released into Earth orbit. For example, orbital observations and high accuracy 
numerical integrations led to the discovery of a class of objects which remain in orbit for long durations due to the 
effect of solar radiation pressure in the synchronous and semi-synchronous orbital regime [11-12]. Furthermore, the 
effects of solar radiation pressure have been observed since 1960 in the orbital behavior of satellites such as the 
ECHO balloon [13], Vanguard [14] and many others [15] and is exploited as main propulsive force for solar sailing, 
when exerted on a large reflective membrane [16-17]. McInnes at al. showed that a small solar sail can be used to 
artificially process the apse line of an orbit, to provide sun-synchronous tracking of the geomagnetic tail [18]. 
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Oyama at al. extended the analysis to the whole phase-space and defined the Hamiltonian of the system to 
investigate the evolution of the orbital elements [19]. Due to the characteristic of the orbit selected for the 
geomagnetic tail exploration mission, only solar radiation pressure was considered, and Earth eclipses were 
neglected; under these assumptions an equilibrium precessing orbit can be found analytically. De Juan Ovelar et al. 
explored the possible exploitation of the effects of solar radiation pressure on artificial nano-spheres and the design 
of a coating for spherical particles to engineer the ratio between the radiation pressure and the gravitational force. 
Earth-Mars transfer orbits were designed by using the particle coating as control parameter [20]. 

This paper investigates how the perturbations of solar radiation pressure and atmospheric drag can be balanced 
to obtain long-lived Earth centered orbits for swarms of SpaceChips, without the use of active control. Given the 
initial orbital elements of the spacecraft, the shadow geometry is determined as a function of semi-major axis, 
eccentricity and angular displacement between the Sun-Earth line Sun  and the orbit pericentre  . The secular 

change of the in-plane orbital elements over a single orbit revolution is then evaluated analytically; an expression is 
derived for the variation of Keplerian elements due to solar radiation pressure, which takes into account the Earth’s 
shadow through an analytic expression for the exit and entry true anomaly from/into eclipses. An analysis of the 
change in orbital elements due to orbital perturbations on such small devices is then performed. A search for initial 
orbital conditions for long-lived orbits is performed through a global search over a wide range of orbit eccentricities, 
altitudes of the pericentre and different values of Sun  , and local optimization through non-linear programming. 

The precession of the apse line of the orbit synchronously with the Sun is imposed in order to ensure the same 
conditions on the solar radiation pressure perturbation at each revolution. 

From this initial analysis the paper presents families of long-lived orbits for swarms of SpaceChips where the 
condition of Sun-synchronous apse-line precession is achieved passively, without any propellant mass consumption. 
The conditions for long-lived orbits are then identified in the orbit phase-space and numerical integration of the 
secular variation of orbital elements is used to characterize the long-term evolution of the orbits. Different families 
of orbits are presented: in those regions of the phase-space where the effect of atmospheric drag is negligible, 
equilibrium orbits can be found under the effect of solar radiation only. If the initial condition is in a certain region 
around the equilibrium solution set, the long-term evolution is characterized by librational motion, progressively 
decaying due to the non-conservative effect of atmospheric drag. It is possible to recognize different arcs of the orbit 
evolution where the trajectory is dominated either by drag or by solar radiation pressure. Asymmetry in solar 
radiation pressure due to eclipses leads to modulation of the orbit energy and angular momentum, and families of 
orbits can be found where the energy gain due to radiation pressure balances the energy dissipation due to drag. A 
comparison with the drag-only and SRP-only scenarios is shown; the orbit lifetime and the final re-entry in the 
atmosphere are assessed.  

Through the paper it is shown that the exploitation of the natural effects of solar radiation and atmospheric drag 
provides a means of enabling long-lived orbits for micro-spacecraft without the use of active control and ensures the 
final re-entry of the SpaceChip devices, so that they do not constitute future space debris. Finally, some applications 
for swarm of SpaceChip devices are proposed. The paper is organized as follows: Section II introduces the 
analytical approach to compute the orbit evolution; the initial conditions for long-lived orbits and the method 
adopted to identify them are described in Section III. Section IV and V present the solution for long-lived orbits and 
the long-term evolution under the effect of solar radiation pressure and drag. Finally some mission applications are 
proposed in Section VI. 

II. Orbit evolution 

A semi-analytical theory is used to compute the orbit evolution of the spacecraft under the influence of solar 
radiation pressure and drag. The secular variation of the orbital elements is obtained by averaging Gauss’ planetary 
equations in the true anomaly or eccentric anomaly form. As a first approach, we consider only the solar radiation 
pressure and the atmospheric drag, whose perturbing accelerations are proportional to the area-to-mass ratio of the 
spacecraft; hence their effect becomes dominant for SpaceChips. Future work will include the influence of the 
Earth’s oblateness, which causes a secular drift of the perigee and the argument of the ascending node. We constrain 
the present study to orbits lying on the ecliptic plane. In the remainder of this section, the semi-analytical model 
used for orbit propagation will be presented. 
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A. Secular variation of Keplerian elements due to solar radiation pressure 

We consider a spacecraft on an Earth-centered orbit lying in the ecliptic plane, with the geometry represented in 
Fig. 1‡. The satellite is subjected to the acceleration due to solar radiation pressure given by 
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where  and ra a  are the components of the acceleration SRP , SRP , SRP

T

ra a   a  in the radial and transversal 

directions in the orbital plane, and the characteristic acceleration 
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where  is the solar pressure SRp 6
SR 2

light

N
4.56 10

m

W
p

c
    (with W the energy flux density of the Sun at 1 AU and 

 the speed of light),  the reflectivity coefficient, lightc Rc A  is the area exposed to the Sun, which is considered 

constant in the following derivation, and m is the mass of the satellite. The angle   is the argument of the orbit 
perigee and the angle Sun  describes the direction of the Sun-line radiation (that is equal to the ecliptic longitude of 

the Sun minus  ). Both   and Sun  are measured with respect to a fixed arbitrary direction, such that the angle 

Sun   represents the angular displacement between the orbit pericentre and the Sun-line direction. Eq. (1) 

assumes that the Sun is at infinite distance from the satellite, that is the parallax of the Sun is negligible. 
 

reference 
direction 

Sun 
radiation

pericentre

fecl, exit 

fecl, enter

ω 

λSun 

Sun 

Fig. 1 Orbit geometry. 

 
To investigate the effect of SRP on the spacecraft orbit, we consider the planar terms of the Gauss’ equations, 

written as function of the true anomaly f [21] 

                                                           
‡ In the figures the acceleration due to SRP is shown directed along the horizontal axis but this does not introduce 
any simplification in the formulation, as the angles are measured from a reference arbitrary direction. 
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where   is the gravitational constant of the Earth. a, e and   are the in-plane orbital elements, f is the true 

anomaly, r is the orbit radius, and p the semilatus rectum. An averaging technique is used to compute the long-term 
variation of the orbital elements, i.e. Eqs. (3) are integrated in true anomaly, considering the other orbital elements to 
be constant over one orbit revolution. In the case of a constant disturbing acceleration in a fixed inertial direction 
defined in Eq. (1), Eqs. (3) can be solved in closed form to find the primitive functions f , , a fe f  for semi-major 

axis, eccentricity and anomaly of the pericentre: 
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Some integration constants ,  and cac ec   are introduced in the primitive functions but they are removed when 

the primitive function is evaluated at two limits of integration. Substituting Eq. (1) in Eqs. (3) the indefinite integrals 
can be computed, as shown in Eqs. (4). After some algebraic manipulations we obtain: 
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where E is the eccentric anomaly which is a bijective relation of the true anomaly 
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Note that Eqs. (5) have been obtained under the assumption that the orbit lies on the ecliptic plane. Blitzer [22] 
follows the work by Cook [23] to obtain a more general form of these equations (dropping the assumption of a 
planar orbit), expressed as function of true anomaly and eccentric anomaly. Kozai [24] and Aksnes§ [25] express the 
same variations as a function of the eccentric anomaly. The equivalence of Eqs. (5) to the general form in the 
literature can be verified by setting  and 0  i  , that is the orbit inclination i (with respect to the Earth 
equatorial plane) is equal to the obliquity of the ecliptic with respect to the Earth equator  . Eqs. (5) assume that the 
disturbing acceleration  is constant when the spacecraft is in sunlight, i.e., the variation of the solar flux over 

time is neglected, and the exposed area 
SRPa

A  in Eq. (2) is considered constant (i.e., the spacecraft has a spherical 

shape or the attitude of the spacecraft is kept constant with respect to the Sun direction). At this point, the total 
variation of the orbital elements can be evaluated over the orbit arc in which the spacecraft is in sunlight: 

ecl,enter ecl, exit0, , ,f f 2     , which is function of a, e, Sun   at the orbit pericentre and the argument of true 

anomaly at which the satellite enters and exits the eclipses,  and . Since we are assuming the orbital 

elements and SRPa  to be fixed over one orbit revolution, at their value at the pericentre, the total variation of the 

orbital elements can be written as: 

ecl, enterf ecl, exitf
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2
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Note that, in the second formulation of the RHS of each of Eqs. (6), 2  needs to be added to   and the 

corresponding  if . 
ecl,enterf

ecl,enterE ecl, enter ecl, exitf f
In the general three-dimensional case the limits of integration come from the solution of a 4th order equation in 

cos f  [26 pp. 155-162],[27 Sec. 2.5.1]. In the planar case we consider (i.e., the orbit lies in the ecliptic plane), the 

arguments of true anomaly when the spacecraft enters and leaves the Earth’s shadow can be expressed as a closed-
form function of the orbital elements:  ecl, enter Sun, ,f a e   ,  ecl, exit Sun, ,f a e   . Assuming that the parallax of 

the Sun is negligible (see Fig. 1): 
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where  is the mean radius of the Earth, and r is the orbital radius. The expressions for  and 

 can be found analytically, after some algebraic manipulations and are given by 
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§ Aksnes also corrects some misprints present in Kozai’s paper. 
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where we denote 
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2
enter E Sun
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 (9) 

The  sign in front of the right term of Eqs. (8) identifies the two symmetric positions which straddle the 
pericentre (and the line of apsides) as shown in Fig. 2. The “x” symbol indicates the two possible solutions of the 
first of Eqs. (8) for  (  and ), whereas the “+” symbol indicates the two possible solutions of the 

second of Eqs. (8) for (  and ). The superscript “+” indicates the solution with an angle between 

0 and π, the superscript “–“ indicates the solution with an angle between 



ecl, exitf

ecl, enf

ecl, exitf 

ter ecl, enf 

ecl, exitf 

ecl, enf 
ter ter

  and 2π. An algorithm was developed to 
identify the correct solution of each of Eqs. (8) corresponding to the actual shadow boundary, by verifying whether 
the orbit pericentre or apocentre is in umbra. 

 

Fig. 2 Eclipse geometry: solutions of Eqs. (8). The “x” symbol indicates the two possible solutions for the 
equation of the exit true anomaly; the “+” symbol indicates the two possible solutions for the equation of the 
entry true anomaly. The superscript “+” indicates the solution with an angle between 0 and π, the superscript 
“–“ indicates the solution with an angle between 0 and 2π. 

 
At this point, the expressions for  ecl, exit Sun, ,f a e    and  ecl, enter Sun, ,f a e    given by Eq. (8) can be 

substituted into Eqs. (6) to give the actual variation of orbital elements considering the Earth’s shadow. If the 
spacecraft does not enter into eclipses, ecl, enter ecl, exit 2f f   , and  some terms of Eqs. (6) vanish (the terms 

containing sin f  and cos f ), in particular the variation of semi-major axis goes to zero. In the case of no eclipses, 

Eqs. (6) simplify to the formulation used by McInnes et. al [18] and Oyama et al. [19]. The secular and long-period 
rate of change of the orbital elements can be obtained by dividing Eqs. (6) by the Keplerian orbital period 
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where the superscript dash is used to indicate the secular variation. The line of apsides of the ellipse will rotate due 
to the perturbing solar radiation pressure acceleration, with a mean rate of precession given by the third of Eqs. (11). 
Moreover, if we consider uniform motion of the Earth around the Sun on a circular orbit (i.e. 

), we can express the third of Eqs. (11) to represent the perigee precession with respect 

to the Sun direction 

   Sun Sun Earth-Sun0t n   t

 
 Sun SRP, 2

Earth-Sun3
SRP 2

d
n

dt a


   


 
   

where Sun
Earth-Sun 3

n
AU


  is the rotational rate of the Earth around the Sun equal to 

deg
0.9856

day
. 

B. Secular variation of Keplerian element due to atmospheric drag 

If the spacecraft orbits below a certain altitude from the Earth’s surface (around 1000 km), its motion is also 
influenced by atmospheric drag acceleration 

 Drag 2
Drag

1
ˆ

2
D

rel rel

c A
v

m
 a v  (12) 

where Dc  is the drag coefficient, dragA  is the effective cross-sectional area of the spacecraft and m its mass,  is 

the velocity relative to the rotating atmosphere and  the corresponding versor. The secular disturbing effect on 

the orbit due to atmospheric drag can be modeled analogously to the case of solar radiation pressure. Starting from 
Gauss’ equations written as function of the eccentric anomaly, King-Hele [28] derived equations which express the 
secular perturbation on the orbital elements due to atmospheric drag. These equations are based on the assumption 
of a time-independent, spherically-symmetric atmosphere with a density that varies exponentially with altitude h, 
according to: 

relv

ˆ
relv

 0
0 exp

h h

H
 

   
 

 (13) 

where 0  is the reference density at the reference altitude  and H is the scale height, whose values are taken from 

tables [29]. If we neglect atmospheric rotation (i.e., the angular velocity of the Earth 
0h

Earth  is zero), the variation of 

Drag, 2i  , Drag, 2 , and Drag, 2  due to drag is zero, while the change of the in-plane orbital elements over a 

single revolution is given by [22]: 
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where p  is the density at the orbit perigee, computed through Eq. (13), drag DQA

m
  at the drag coefficient 

c
 (note th

Dc  is consid red constant), the factor e
ae

c
H

 , and kI  a ore the m dified Bessel functions of the first kind of order k 

and argument c [30 Cap. 9]. The assumption of a static atmosphere helps to simplify the problem since it decouples 
the variation of the out-of-plane orbital elements from the variation of semi-major axis, eccentricity and anomaly of 
the pericentre. In particular, since the change in inclination is zero, the orbit always lies in the ecliptic plane. Note 
that Eqs. (14) are valid up to the order of eccentricity indicated, within the range 0.01 0.8e  vides an 
expression of both Drag, 2a

. Blitzer pro

 , Drag, 2e  rag, 2, and Dph  , e interdependent [22]. It was chosen to compute 

Drag, 2e

which ar

  and  Drag, 2ph   and to derive Drag, 2a  ose two expressions as shown in Eqs. (14). This choice 

minimizes the numerical errors when the equations giving the corresponding rate of change [see Eqs. (15) in the 
following] are integrated over a long duration, because smaller errors (due to the higher terms in eccentricity) are 
cumulated in the computation of the perigee height, which determines the value of the air density. 

 from th

In Section V the validity of Eqs. (6) and Eqs. (14) is verified by comparison with the numerical integration of the 
dynamics in Cartesian coordinates, using the expression for the disturbing accelerations Eq. (1) and Eq. (12). 

Analogously to Eqs. (11), we obtain the secular and long-period rate of change of the orbital elements by 
dividing Eqs. (14) by the Keplerian orbital period: 

 

Drag, 2

3
Drag

Drag, 2

3
Drag

Drag

2

2

0

ada

dt a

ede

dt a

d

dt





















 (15) 

The total secular variation of the orbital elements can be expressed as: 

 

SRP Drag

SRP Drag

SRP

da da da

dt dt dt

de de de

dt dt dt

d d

dt dt

 

 

 



 (16) 

10 
American Institute of Aeronautics and Astronautics 

 



III. Condition for long-lived orbits 

To study the effect on the satellite’s orbit of the influence of both solar radiation pressure and atmospheric drag, 
the secular variation of the Keplerian elements over a single orbital revolution can be computed by adding Eqs. (6) 
to Eqs. (14), according to the principle of superimposition. This can be done under the assumption that the coupling 
between SRP and atmospheric drag is negligible to first order. This simplifying assumption will be verified through 
numerical integration in Section V. Therefore, we obtain: 

 

Drag+SRP, 2 Drag, 2 SRP, 2

Drag+SRP, 2 Drag, 2 SRP, 2

Drag+SRP, 2 Drag, 2 SRP, 2

a a a

e e e

 

 





    

    

    

    

 

The search for equilibrium orbits imposes three conditions to be satisfied. The total variation of semi-major axis 
and eccentricity due to SPR and drag must be zero, i.e., the combined effect of the two natural perturbations must 
cancel. Moreover, the sun-synchronous condition imposes the requirement that the change in argument of perigee 
over one orbit due to SRP (recall from Eqs. (14) that Drag, 2 0  ) must be equal to the angular displacement of 

the Earth around the Sun (i.e., the apparent rotation of the Sun around an Earth inertial system) over one orbital 
period of the spacecraft, such that the net change of   is zero. 

 

SRP, 2 Drag, 2

SRP, 2 Drag, 2

SRP, 2 Sun, 2

0

0

a a

e e

 

 

  

   
   
  

 (17) 

with , T being the orbital period, given by Eq. (10), which depends only on the semi-major 

axis. Note that the third of equations (17) in the simplified case without Earth shadow was adopted by McInnes et al. 
[18] and Oyama et. al [19] for determining the required characteristic acceleration of a solar sail to provide sun-
synchronous apse-line precession. 

 Sun, 2 Earth-Sunn T   a

r ofBefore focusing on the solution of Eqs. (17), we analyze the behavio  SRP, 2a  , Drag, 2a  , SRP, 2e  , 

Drae g, 2 d SRP, 2, an   as a function of the initial orbit conditions of the satellite (i.e., the values of the Keplerian 

elements nd Sun a, e, a    at the orbit pericentre). Fig. 3 to Fig. 5 show respectively the variation of semi-major 

axis, eccentricity and anomaly of the pericentre over a single orbit revolution due to SRP and drag, as a function of 
the initial condition in eccentricity and angular displacement with respect to the Sun-direction Sun  . The 

characteristic area-to-mass ratio for this example is reported in Table 1 (SpaceChip 2), however the following 
analysis is valid for all the SpaceChips proposed in Section IV.A. Due to the asymmetry introduced by eclipses, the 
net change in semi-major axis due to solar radiation pressure is not zero and its sign depends on the orientation of 
the orbit with respect to the Sun (see Fig. 3a). Due to the presence of the Earth’s shadow, the increase in energy that 
the spacecraft gains over the half of the orbit while moving away from the Sun is not balanced by the energy loss 
when moving towards the Sun. This effect is greater the more the asymmetry of the orbit geometry with respect to 
the Sun-line is emphasized (i.e., Sun   far from 0 or  ). The effect of drag, instead, is not conservative and 

causes a constant energy loss (see Fig. 3b). It is straightforward to see that, when the two effects are superimposed, 
the zero of SRP, 2a Drag, 2a     moves to values of Sun   within the range 0 Sun      (see Fig. 3c and d). 

The change of eccentricity over a single orbit under the influence of solar radiation pressure is a function of 
 in addition to other terms due to the presence of eclipses (see Fig. 4a). Atmospheric drag causes a 

constant decrease in eccentricity (see Fig. 4b), hence the superimposition of the effects, moves the zero of 

sin  

SRP, 2e



rag, 2e

Sun

D    towards a range of angular displacements Sun 2       (see Fig. 4c and d). Finally the 

change in anomaly of the pericentre due to solar radiation pressure varies as  Sun cos  in addition to other terms 

due to eclipses (see Fig. 5a) and it has to counteract the angular rotation of the Earth around the Sun over one orbital 
period of the spacecraft, always positive (see Fig. 5b). From Fig. 5c we can conclude that this can be verified for a 
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range of angular displacements Sun

3

2 2

      . The intersection between SRP, 2  and Sun, 2  can be also 

seen in Fig. 6 for a fixed value of perigee height. 
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Fig. 3 Variation of semi-major axis over a single orbit revolution for SpaceChip 2 due to SRP and drag as 
a function of the initial condition in eccentricity and ω-λSun; a) change due to SRP, b) change due to 
atmospheric drag, c) evolution of Δa due to SRP as function of ω-λSun, and d) evolution of Δa due to drag 
as function of ω-λSun. 
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Fig. 4 Variation of eccentricity over a single orbit revolution for SpaceChip 2 due to SRP and drag as a 
function of the initial conditions in eccentricity and ω-λSun; a) change due to SRP, b) change due to 
atmospheric drag, c) evolution of Δe due to SRP as function of ω-λSun, and d) evolution of Δe due to drag 
as function of ω-λSun. 
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Fig. 5 Variation of anomaly of the pericentre due to SRP and precession of the Sun-line over a single 
orbit revolution for SpaceChip 2 as a function of the initial conditions in eccentricity and ω-λSun; a) 
change due to SRP, b) Sun-line precession, c) evolution of Δω due to SRP as function of ω-λSun, and d) 
evolution of ΔλSun as function of ω-λSun. 

 

Fig. 6 Intersection between the variation of anomaly of the pericentre due to SRP and precession of the Sun-
line over a single orbit revolution for SpaceChip 2 as a function of the initial condition in eccentricity and ω-
λSun. 

 
To summarize, from the analysis of Fig. 3 to Fig. 5 it is possible to draw conclusions on each of the equations in 

system Eq. (17), and to limit the domain of angular displacements where solutions can be found; the first of Eqs. 
(17) can be zero within the range Sun0       and the total variation of eccentricity [second of Eqs. (17)] can be 

zero for Sun 2     

SR

 (in both the equations, the limit values are for the case of SRP only). The Sun-

synchronous condition P, 2 Sun, 2      can be solved for Sun

3

2 2

       (the limit values are for a circular 

orbit as can be seen in Fig. 6). Therefore, we can confirm that the system Eq. (17) cannot be satisfied if both solar 
radiation pressure and atmospheric drag are present. If the effect of drag is negligible, equilibrium orbits can be 
identified under the effect of solar radiation pressure for Sun    ; this concept was exploited by McInnes et al. 

[18] and Oyama et. al [19]. When solar radiation pressure and atmospheric drag both have a non-negligible effect on 
the spacecraft orbit, even if a complete equilibrium is not possible, it is useful to study partial equilibrium solutions: 
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SRP, 2 Drag, 2

SRP, 2 Sun, 2

0a a 

  

   
  

 (18) 

 
SRP, 2 Drag, 2

SRP, 2 Sun, 2

 

  

0e e   
  

 (19) 

in which the Sun-synchronous condition is satisfied and only one variation, either semi-major axis or eccentricity is 
zero. These solutions are visualized in Fig. 7 for SpaceChip 2 whose characteristics are reported in Table 1. Fig. 7a 
shows an example for which the total variation of semi-major axis (dashed line) due to SRP and drag is zero, and the 
Sun-synchronous condition is satisfied ( SRP, 2  is represented by the continuous black line, Sun, 2  is 

represented by the continuous black bold line). Fig. 7b reports a solution of the system Eq. (19) for which the total 
variation of eccentricity (dotted line) due to SRP and drag is zero, and the Sun-synchronous condition is satisfied. 
The meaning of these partial equilibrium solutions of the systems Eq. (18) and Eq. (19) will be explained later in 
Section V. 
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Fig. 7 Variation of semi-major axis, eccentricity, anomaly of the pericentre over a single orbit revolution 
for SpaceChip 2 due to SRP and drag as a function of the initial condition in ω-λSun. a) Condition for 
Δa=0 with the Sun-synchronous condition satisfied, and b) Condition for Δe=0 with the Sun-synchronous 
condition satisfied. 

 
When only solar radiation pressure, without the Earth’s shadow, is considered, the solution of system Eq. (17) 

can be determined analytically [18-19]. In the more complex case we consider, an analytical closed-form solution of 
Eqs. (17)‒(19) is not possible; therefore, the problem is solved numerically. In this paper a global multi-start 
approach is adopted. A local algorithm is started from several points randomly distributed over the entire domain of 
semi-major axis, eccentricity and arguments of angular displacement Sun  . For the results included in this paper 

we set  sampling points for the solution of each of the systems Eq. (17)‒(19). Starting from each point on 
the mesh, a local minimization is performed numerically, through a subspace trust-region method, based on the 
interior-reflective Newton method [31-32]. The objective function used for the minimization is: 

53.2 10

 
 Sun

Drag, 2 SRP, 2 Drag, 2 SRP, 2 Drag, 2 SRP, 2 Sun, 2, ,
min a ea e

w a a w e e w       
  


               

where wa, we, w  are weight parameters introduced to treat this multi-objective minimization problem (the three 

equations of Eqs. (17) must be solved) as a single-objective minimization. Depending on the value of the weight 
parameter, the multi-start algorithm can identify the solution set of system Eq. (17), Eq. (18), or Eq. (19). The ratio 
between wa and w , and we and w  were chosen such that, for any solution found the Sun-synchronous apse-line 
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condition is always satisfied. Gauss’ equations in form Eq. (3) are singular for 0e   and are valid for elliptic orbits; 
hence we restricted the eccentricity to be within the range 0.01 0.8e   which is of practical interest. 

IV. Results for partial equilibrium orbits 

In the following section, the numerical results of the solution of systems Eq. (17), Eq. (18) and Eq. (19) will be 
shown, in the convenient representation of the phase-space.  

A. Spacecraft and perturbation model 

We consider a silicon microchip with density 2.3 g/cm3 (= 2300 kg/m3), and dimensions reported in Table 1. 
Three different cases are analyzed, corresponding to increasing values of area-to-mass ratio. Table 1 reports the 
dimension of a microchip, 1 cm square, with different thickness values , and for comparison, the radius l  of a 

sphere with an equivalent area-to-mass ratio. The sphere shape is usually adopted for studies on interplanetary dust. 
Since the SpaceChip density is assumed uniform, the characteristic length is represented by the chip’s thickness: 

2l

 
2

chip 1

2
2 siliconchip 1 2 silicon

1A l A

m lm l l 




  
 

 

2A lsphere

3
sphere silicon

silicon

1
4 4
3 3

A

mm l l  


  
 

where A is the cross-section area. The size of SpaceChip 1 (see Table 1) was taken from the design by Atchison and 
Peck [4], hence it represents a near-term device. SpaceChip 2 and 3 represent scenarios with lower technology 
readiness levels; however they were selected to show the sensitivity of the area-to-mass-ratio on the conditions for 
long-lived orbits discussed later. 

In this paper we consider that the average effective cross-section A  exposed to the Sun is always equal to the 

cross-section area of the spacecraft A. This implies that the spacecraft has a spherical shape or its attitude is kept 
fixed with respect to the Sun-line. A passive Sun-pointing attitude control was proposed for millimeter-scale solar 
sails, based on faceted surfaces to stabilize the Sun-pointing plate [4]. Alternately, electro-chromic elements with 
variable reflectance can be layered at the sides of the chip to be exploited as steering device, as tested on the 
IKAROS mission [17]. Moreover a reflectivity coefficient 1.8Rc   is assumed (note that for a black body 1Rc  , 

for a flat mirror perpendicular to the light direction 2Rc  ). 

For the model of atmospheric drag, a drag coefficient 2.1Dc   is chosen ( 2.2Dc   is usually used for a flat 

plate model,  to 2.1 for spherical particles), and the cross-sectional area 2.0Dc  dragA  is considered constant and 

equal to the cross-section area of the spacecraft. The reference values for the computation of the air density in Eq. 
(13) where taken equal as [29]: 

  

0

13 3
0

600 km

71.835 

1.454 10  kg/

m

m

k

h

H

 



 



since the region where solar radiation pressure and atmospheric drag are known to have comparable effect is around 
400‒800 km. A more accurate value of the density would be obtained by selecting the reference values , 0h 0  and 

H closest to the range of orbit altitudes considered. 
Table 1 contains also the characteristic acceleration due to solar radiation pressure computed through Eq. (2). 
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Table 1 SpaceChip characteristics. 

 
Chip dimensions 

[mm] 
Sphere dimensions 

l [mm] 
A/m [m2/kg] SRPa  [mm/s2] 

SpaceChip 1 
l1 = 10 
l2 = 0.0250 

0.0187 17.3913 0.1427 

SpaceChip 2 
l1 = 10 
l2 =  0.0133 

0.01 32.6087 0.2676 

SpaceChip 3 
l1 = 10 
l2 = 0.00796 

0.00597 54.6364 0.4484 

 

B. Analysis of long-lived orbits 

The solution of the systems Eqs. (17)-(19) can be represented in the phase space  Sun pe h   or 

equivalently , as depicted in Fig. 8 for missions employing SpaceChip 1. The graph is represented 

in three dimensions (Fig. 8d) and three two-dimension views (Fig. 8a‒c). For an eccentricity higher than 
approximately 0.115 and perigee height above 900 km, a set of solutions for system Eq. (17) exists with the 
condition 

 Sune  

Sun

a

    . With these initial conditions the orbit perigee is along the Sun‒Earth direction, facing the 

Sun. This position is a stable condition for the variation of Sun   and the change in eccentricity and semi-major 

axis over one orbit cancels, as the effect or SRP is symmetric in this configuration, and the drag is negligible (over 
one orbit). Considering the branch of the graph with Sun    , the greater the perigee height and the eccentricity 

decrease, the greater the effect of drag becomes up to a certain point at which it cannot be neglected. Beyond this 
point, as expected from the analysis in section III, no global equilibrium solutions [Eq. (17)] can be found. In this 
region of the domain (for perigee heights below 800 km approximately), atmospheric drag and SRP have 
comparable effects. Still a set of solutions exists for system Eq. (18) (i.e., 2 0a    and sun-synchronous condition 

satisfied) and Eq. (19) (i.e.,  and sun-synchronous condition satisfied), represented respectively by the gray 

colored branch and the black colored branch of the graph. Note that each point in Fig. 8 corresponds to an initial 
condition for an Earth-centered orbit. Fig. 8 is an example of bifurcation, a solution for global equilibrium orbits 

[system Eq. (17)] can be found for eccentricities  and perigee heights higher than a certain value 

2e 0 

* *
pe h . Below, 

the equilibrium disappears and the only possible solution degrades to system Eq. (18) or Eq. (19) (only two out of 
the three equations of system Eq. (17) can be satisfied). 

 

a) b) 
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c) d) 

Fig. 8 Long-lived orbits conditions for SpaceChip 1 missions. 

 
As expected the lines in Fig. 8 represent the intersections between the surfaces solutions of system Eq. (17) as 

shown in Fig. 9. The dark gray surface is the solution of the sun-synchronous condition SRP, 2 Sun, 2     , the 

light gray surface on the domain Sun 2       contains the initial conditions for which the variation of the 

eccentricity due to SRP and drag balances (i.e., SRP, 2 Drag, 2 0e e     ) and the cyan surface on the domain 

Sun0       represents the solution of SRP, 2 Drag, 2 0a a     . In correspondence with the condition 

Sun    , above a certain value of the perigee altitude, the surfaces SRP, 2 Drag, 2 0e e      and 

 intersect. Both the perturbing acceleration due to solar radiation and atmospheric drag are 

directly proportional to the area-to-mass ratio of the spacecraft [see Eq. (2) and Eq. (12)], hence we can expect that 
the surfaces  and 

SRP, 2 Drag,a a   2 0 

SRP, 2  Drag, 2a a  0  SRP, 2 Drag, 2 0e e      remain unchanged for any area-to-mass ratio. 

Instead, only the surface SRP Sun, 2 0     changes. 

 

a) b) 

Fig. 9 Surfaces representing each of the equations of system Eq. (17) for SpaceChip 1 missions. a) 3D 
view, and b) 2D view in eccentricity ‒ ω-λSun. 
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In Fig. 10 the solutions for different SpaceChip designs are shown to appreciate the sensitivity of the solution to 

the spacecraft area-to-mass ratio. In particular, when the parameter 
A

m
 increases, the amplitude of SRP, 2 , 

represented in Fig. 5a, increases, but Sun  is unchanged since it does not depend on the spacecraft characteristics; 

hence the intersection surface, shown in Fig. 9, is displaced for increasing values of eccentricity, as can be seen in 
Fig. 10. 

 

a) b) 

c) d) 
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e) f) 

Fig. 10 Long-lived orbits condition for SpaceChip missions. 

 
In the following sections we will refer to Fig. 8, and Fig. 10 as long-lived orbits surface and we will indicate the 

Keplerian vectors of initial conditions (i.e., each point on the long-lived orbits surface) with the symbol LLkep . 

V. Long-term orbit evolution 

In this section we analyze the long-term evolution of orbits whose initial conditions are represented by the set of 
points in Fig. 8 and Fig. 10. The long-term evolution is predicted by integrating Eqs. (16) and using a stopping 
condition for the integration: 

  (20) forw : 250 km  0.01  0.8pC h e e     



that is when the orbit perigee drops under a set limit of 250 km or the eccentricity exceeds the lower or upper 
bounds of 0.01 and 0.8, which is our domain of interest. The first condition of Eqs. (20) is set because below a 
certain perigee altitude the model used for predicting the effect of atmospheric drag is not valid, since H changes 
rapidly with height, and the orbital changes are no longer small enough for their squares to be ignored [28]. 
Anyway, the lifetime once the spacecraft transits below that altitude becomes so short that the mission is over. Later 
in this section, it will be useful to propagate the initial conditions backwards in time, to find the foregoing behavior 
of the spacecraft. In this case the stopping condition for the integration is:  

  (21) back , up: 250 km    0.01  0.8p p pC h h h e e      

where also an upper limit on the perigee altitude  is introduced. The numerical integration of Eqs. (16) is 

performed through an adaptive step-size Runge-Kutta-Fehlberg integration scheme integrator with a six stage pair of 
approximation of the fourth and fifth order [33], with absolute and relative tolerance of . 

, upph

142.5 10
For a better understanding of the long-term behavior, it is useful to distinguish two different parts of the long-

lived orbits condition graph. We indicate with  the value of the eccentricity at which the bifurcation takes place; 

note that the exact value of  depends on the tolerances set for the solution of system Eq. (17), which determine 
when the solution for a stable orbit (i.e., three equations of system Eq. (17) satisfied) does not exist anymore. In that 
case we can still find partial equilibrium solutions represented by systems Eq. (18) and Eq. (19). According to this 
definition we define the sections of long-lived orbits surface as: 

*e
*e

 *e e  where we can identify the two branches of the solutions sets of system Eq. (18) and Eq. (19); 

 *e e  where the two branches progressively merge in the solution of system Eq. (17) 
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A. Region e < e* 

We now focus on the first region of the solution space, in particular on the branch representing the solutions of 
systems Eq. (18) (i.e.,  and the sun-synchronous condition satisfied). The dynamics of the SpaceChip has 

been propagated, starting from some vector of initial conditions belonging to this set. For each initial point, the orbit 
has been propagated backward in time, considering the dynamics of SRP and drag [Eqs. (16)], until one of the 
conditions in Eq. (21) is met. Then, the final state of the backward integration is used as the initial condition for the 
forward integration, until one of the conditions in Eq. (20) is met. Having the highest value of area-to-mass ratio, the 
effect of the perturbations is most pronounced for SpaceChip 3; hence we select this scenario for the analysis in this 
section. In Fig. 11 the long-term evolution subjected to SRP and drag is shown with the black line, starting from the 
initial state indicated with the black symbol ‘+‘, until the stopping criterion Eq. (20) is met. The behavior is similar 
for any vector of initial conditions in the set. The orbit perigee drifts following the apparent Sun-line rotation, 
starting behind the Sun and moving ahead of it while the perigee altitude rises when 

2 0a  

Sun0       and decreases 

when Sun 2      . Each line bends right in correspondence to the branch with 2 0e    and 2 Sun, 2     , 

and then the spacecraft orbit evolves towards decay. In this case all the end-points represented by the black dot 
symbol are in correspondence with the stopping condition 250 kmph   of Eq. (20). In Fig. 11 the orbit evolution 

under the effect of drag only is superimposed (gray line), starting from the same initial conditions of the SRP and 
drag case, identified with the black symbol ‘+‘. The orbit shrinks while the radius of the perigee tends to remain 
constant (see Fig. 11c). The difference between the SRP and drag and drag-only case is highlighted in Fig. 11c‒d. 
The effect of SRP causes a significant increase in the orbit lifetime with respect to the drag-only case, as shown in 
Fig. 12, as a function of the eccentricity of the initial condition vector (‘+’ symbol in Fig. 11). 

The long-term forward evolution of the orbits with initial conditions which lie on the branch representing the 
solutions of systems Eq. (19) (i.e.,  and sun-synchronous condition satisfied), instead, lead to a fast orbit 

decay, and the presence of SRP contributes to a decrease of the orbit lifetime with respect to the drag-only case (see 
Fig. 14). This is shown in Fig. 13, where the black line represents the SRP and drag scenario, the gray line the drag-
only scenario and the initial condition belongs to the gray branch (

2 0e  

2 0e    and 2 Sun, 2    

Sun 0

). Note that in the 

SRP and drag scenario, the orbit decay phase does not evolve at a constant perigee, as in the case of drag only. 
Moreover, the gray lines in Fig. 13b (drag only scenario) which jump from     to Sun 2     

correspond to rotational motion, where Sun   continues to decrease. 

 

a) 
b) 
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c) d) 

Fig. 11 Long-term orbit evolution for SpaceChip 3 from initial conditions with Δa=0 and Δω=ΔλSun. 
The black lines represent the SRP and drag scenario, the gray lines the drag-only scenario. a) 3D view in 
the phase-space with perigee height on the z-axis, b) 3D view in the phase-space with semi-major axis on 
the z-axis, c) 2D view in perigee height‒eccentricity, d) 2D view in semi-major axis‒eccentricity. 
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Fig. 12 SpaceChip 3 orbit lifetime for evolution from initial conditions with Δa=0 and Δω=ΔλSun. The black 
line represents the SRP and drag scenario, the gray line the drag-only scenario. 
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a) b) 

Fig. 13 Long-term orbit evolution for SpaceChip 3 from initial conditions with Δe=0 and Δω=ΔλSun. 
The black lines represent the SRP and drag scenario, the gray lines the drag-only scenario. 
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Fig. 14 SpaceChip 3 orbit lifetime for evolution from initial conditions with Δe=0 and Δω=ΔλSun. The y-axis 
is in logarithmic scale. The black line represents the SRP and drag scenario, the gray line the drag-only 
scenario. 

 
1. Numerical simulation 

The orbit evolution was obtained by integrating the secular variation of Keplerian elements obtained through an 
averaging technique, given by Eqs. (16). In this subsection we verify this approximation, by using numerical 
propagation of the SRP and drag dynamics expressed in Cartesian coordinates. In this way we can assess the 
accuracy of the semi-analytical method used in Section II and verify the validity of some techniques and 
assumptions adopted: 

 Use of an averaging technique for computing the secular change in orbital elements from Gauss’ equations in 

true anomaly and eccentric anomaly form; 

 Neglecting the coupling between SRP and drag; 

 Use of Eqs. (14) to compute the change in orbital elements due to drag which are valid up to the fourth order 

of eccentricity. 
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The dynamical equations in Cartesian coordinates consider the solar radiation pressure, with solar eclipses, 
atmospheric drag and the Earth’s gravity field: 
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where  is the Sun‒Earth direction, considering uniform motion of the Earth around the Sun on a circular 

orbit (i.e. ). 
Sun-Earthr̂

Sun    Sun Earth-Sun0t n  
For consistency, also the propagation of the dynamics in Cartesian coordinates is terminated once the orbit 

perigee reaches the lower boundary allowed (i.e., 250 kmph  ). For the integration of Eqs. (22)‒(23) an adaptive 

step-size Runge-Kutta-Fehlberg integration scheme integrator is used with a six stage pair of approximation of the 
fourth and fifth order [33], with absolute and relative tolerance of 142.5 10 . 

Fig. 15 shows one orbit evolution scenario taken from Fig. 11, with initial conditions 0.12e  , 

Sun 110.55 deg   , 662.8 kmph   and 8044.9 kma  . The numerical propagation using the dynamical 

equations in Cartesian coordinates (black line) is superimposed on the propagation through the semi-analytical 
method (gray line). Fig. 15b shows the first phase of the mission; note that the Cartesian integration fully describes 
the dynamical evolution, capturing also the periodic variation of the orbital elements and the discontinuities due to 
the eclipse phase (i.e., discontinuities in the black line). The gray line instead, only describes the average behavior 
over one orbit revolution, giving the long-term evolution (see the two lines in Fig. 15a). The two lines differentiate 
much more close to the decay phase (see Fig. 15c), although giving the same estimation of the orbit lifetime. In fact 
the orbit lifetime LLT  computed with the semi-analytical method is 47.759 days, compared to 47.773 days of the 

propagation in Cartesian coordinates. 
Fig. 16a compares the numerical propagation through the semi-analytical formulae (gray line) with the 

integration in Cartesian coordinates (black line) for all the solutions represented in Fig. 11. For all the solution the 
averaged evolution gives a good estimate with that obtained by numerical integration of the equations of motion in 
Cartesian coordinates. The computational time required for the orbit propagation using the semi analytical method is 
two orders of magnitude lower than the computational time required for the integration in Cartesian coordinates. 
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a) 

b) 

c) 

Fig. 15 Numerical propagation of one solution for SpaceChip 3 in Cartesian coordinates from initial 
conditions with Δa=0 and Δω=ΔλSun. The orbital parameters of the initial orbit are e = 0.12, hp = 662.8 km, ω-
λSun = 110.55 deg, a = 8044.9 km and the orbit lifetime of the long-lived orbit is TLL = 47 days. The black line 
represents the Cartesian propagation, the gray line represents the semi-analytical propagation. a) Long-time 
orbit evolution, b) zoom on the initial phase, and c) zoom on the final decay phase. 
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Fig. 16 Numerical propagation of the solutions for SpaceChip 3 in Cartesian coordinates from initial 
conditions with Δa=0 and Δω=ΔλSun. The black lines represent the Cartesian propagation, the gray lines 
represent the semi-analytical propagation. a) Propagation in the phase-space, and b) Orbit lifetime. 

 

B. Region e ≥ e* 

When we consider an initial condition vector which straddles the bifurcation region, the long-term evolution of 
the orbit presents an interesting behavior. As before, it is convenient to propagate the dynamics backwards in time, 
starting from a vector of initial conditions selected from the set of solutions of the system Eq. (17) or of the system 
Eq. (18) with a value of eccentricity close to the bifurcation region. The backward integration is continued until the 
stopping condition Eq. (21) is met. Fig. 17 shows an example of this orbit evolution behavior; the selected condition 
on the long-lived orbit graph is: 

 Sun:  0.44085,  799.0144 km,   1.2835.8 km,  1.78.5229 degLL pkep e h a        

and  was fixed at 3000 km. Note that the choice of  is arbitrary, as it is set only to fix a limit on the 

backward integration. The final state of the backward integration (black ‘+’ symbol in Fig. 17) is used as the initial 
condition for the forward integration, until one of the conditions in Eq. (20) is met. As can be seen from Fig. 17a and 
the two projections in Fig. 17b and c, the long-term evolution in the phase-space diagram is characterized by a 
librational and progressively decaying motion around the equilibrium line which represents the solution of Eq. (17); 
i.e., the spacecraft performs quasi-closed loops in the eccentricity-

, upph , upph

 Sun   plane around the equilibrium point at 

which  2 2 2 Sun, 20,  0,  a e            . With respect to the SRP only case (see [19]) the loops do not close 

completely as they become smaller, while their centre point moves along the equilibrium line towards increasing 
values of eccentricity, i.e., the spacecraft describes a spiral in the phase-space. The orbit perigee oscillates around 
the Sun-line while the orbit stretches and contracts due to the oscillation both in eccentricity and semi-major axis. 
Fig. 18 depicts the evolution under SRP and drag in terms of orbit shape. Over one single loop in Fig. 17, the orbit 
librates as represented in Fig. 18a (orbit 1, orbit 2, orbit 3, orbit 4). Due to the effect of drag, a constant decaying 
motion is superimposed on the librational motion (see Fig. 18b orbit 5, orbit 6, orbit 7, orbit 8). This is clearly 
visible in Fig. 17b and Fig. 17d; the librational loops (due to the effects of SRP) become progressively smaller (i.e., 
the deviation from the centre value of eccentricity, Sun  , and perigee height decreases) due to the effect of 

atmospheric drag. In particular from Fig. 17e, it is possible to infer that the effect of drag is almost negligible over 
the major part of the librational loop and becomes predominant in the arc of the loop when the perigee reaches its 
local minimum. In correspondence to the local minima of the perigee height, which oscillates due to SRP, the 
spacecraft experiences a rapid drop in orbit energy (see the step-fall in the semi-major axis in Fig. 17e), therefore the 
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following librational loop will be centered on a point with a lower semi-major axis (i.e., lower value of the averaged 
orbit energy over the overall librational loop). In Fig. 17e the forward propagation due to SRP and drag (black line) 
is compared with the orbit evolution subjected to SRP only (bold black line). In the latter case the motion is 
exclusively librational (i.e., the spacecraft perpetually travels over the initial loop). Note that the inclination of the 
librational loop under SRP only, visible in the eccentricity ‒ semi-major axis projection, is due to the asymmetry in 
geometry due to eclipses. In fact, in the presence of Earth’s shadow the secular variation of semi-major axis is 
different than zero; therefore, the orbit energy is not conserved but the average energy, over one librational loop, is 
conserved. 

The higher the equilibrium value of the semi-major axis (i.e., centre point of the librational loop), the lower is the 
excursion in semi-major axis over one loop. For a value of semi-major axis sufficiently high, the effect of eclipses 
can be neglected, and the SRP model (with eclipses) falls into the model used by Oyama et. al. (without eclipses) for 

which 
SRP

da

dt
 can be considered to be zero [19]. 

In Fig. 17 the orbit evolution under the effect of drag-only is shown (gray line). The initial condition for the 
forward propagation was set equal to the point of the forward propagation with SRP and drag (black line) where the 
first local minimum of perigee height is reached (gray ‘+’ symbol). 

When the effect of SRP cannot be exploited ( 0Rc  ), the orbit evolution follows a rotational motion where 

Sun   continuously decreases (see Fig. 17a and Fig. 17c). The evolution of eccentricity and perigee height are 

also different; the orbit becomes increasingly circular while the perigee altitudes stays almost constant (see Fig. 
17b). Once the orbit eccentricity becomes zero, the orbit radius starts to shrink quickly until the final decay in the 
lower atmosphere (gray ‘x’ symbol). In the SRP and drag scenario the final (and very fast) leg of the orbit decay lies 
within the Sun   domain bounded by the two branches of the solutions of systems Eq. (18) and Eq. (19). 

Therefore, the bifurcation region can be seen as a sink for all the librational motion trajectories that design at higher 
values of semi-major axis.  

The oscillation in perigee and apogee altitude through the orbit evolution is shown in Fig. 17f (black line) and is 
compared to the drag-only scenario (progressive constant decrease of the apogee, while the perigee height tends to 
remain constant), represented by the continuous gray line, and the SRP only scenario (the apogee and perigee 
continuously oscillate between their minimum and maximum value), represented by the bold black line. 

Finally, Fig. 19 compares the time evolution of the Keplerian elements, under the effect of SRP and drag (black 
line), drag only (gray line), and SRP only (light gray line). The perigee oscillation due to SRP is damped by the 
presence of drag. The atmospheric drag, mainly experienced in the region around 700 km (for SpaceChip 3), causes 
the decrease of the maximum value of the perigee that is reached over each librational loop. The minimum perigee 
(in analogy with the orbit perigee of the drag only case), instead, tends to remain constant until the last part of the 
decay phase (see Fig. 19a). The semi-major axis behavior in time is characterized by a periodic motion (with the 
period of one librational loop that is different from the period of one single orbit) due to SRP, plus a quasi-constant 
energy decrease due to drag (see Fig. 19b). Note that the orbit life time with SRP and drag is around 28 years, 
compared to the 11.3 years of the drag-only scenario. Therefore, long-lived orbits can be designed where 
asymmetric solar radiation pressure can balance energy dissipation due to air drag. In addition, the effect of 
atmospheric drag can be exploited to ensure the end-of life decay of SpaceChips, thus preventing long-lived orbit 
debris. As already pointed out for Fig. 17d, the orbit perigee oscillates around the Sun direction ( Sun  

Sun

 ) and 

the oscillation are damped by atmospheric drag (see Fig. 19c). In the drag-only scenario,    is continuously 

decreasing as shown in Fig. 17a and Fig. 17c. As can be seen in Fig. 19d and Fig. 17b, the eccentricity oscillates 
around the value that satisfies system Eq. (17) for a given semi-major axis and Sun    . 
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a) 

b) 

c) d) 

e) 
f) 

Fig. 17 Long-term orbit evolution for SpaceChip 3 from a vector of initial conditions for librational 

28 
American Institute of Aeronautics and Astronautics 

 



motion. The black lines represent the SRP and drag scenario, the gray lines the drag-only scenario, the 
bold black lines the SRP-only scenario. The ‘+ symbol’ represents the initial condition for the forward 
propagation, the ‘.’ symbol represents the end-condition for the SRP and drag case, the ‘x symbol’ 
represents the end-condition for the drag-only case. a) 3D view in the phase-space with perigee height on 
the z-axis, b) 2D view in eccentricity ‒ perigee height, c) 2D view in eccentricity ‒ ω-λSun, d) zoom of 2D 
the view in eccentricity ‒ ω-λSun to appreciate the librational motion, d) 2D view in eccentricity ‒ semi-
major axis, and e) oscillation of the apogee and the perigee height. 

 

a) b) 

Fig. 18 Librational and progressively decaying motion due to SRP and drag. a) The orbit perigee 
oscillates around the Sun-line and the orbit shape changes due to the oscillation in eccentricity and semi-
major axis. b) Due to the effect of drag the orbit perigee is subject to a secular decrease. 

 

a) b) 
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c) d) 

Fig. 19 Evolution of the Keplerian elements for SpaceChip 3, under the effect of SRP and drag (black 
line), drag-only (gray line), and SRP-only (light gray line). a) Perigee height, b) semi-major axis in Earth 
radii, c) angular displacement with respect to the Sun direction, ω-λSun, and d) eccentricity. 

 
The orbit evolution analyzed for the selected solution in Fig. 17‒Fig. 19 can be reproduced selecting any point 

straddling the bifurcation region of the long-lived orbits graph (see Fig. 10). This procedure is shown in Fig. 20; 
different vectors of initial conditions LLkep  belonging to the branches Eq. (18) and Eq. (17) of the long-lived orbits 

graph are selected, and ordered in increasing eccentricity. These sets of orbital elements are indicated in Fig. 20a 
with a ‘o’ symbol and gray scale. Starting from those points, the forward and backward propagation of the 
SpaceChip orbit, under the effect of SRP and drag can be seen. The stopping criterion for the forward integration is 
defined by Eq. (20), whereas the stopping criterion for the backward integration is defined by Eq. (21), with 

 for this simulation. The first two solutions represented in Fig. 20 (darker gray lines) show the same 

behavior of the solutions in Fig. 11: the backward propagation from the initial condition vectors 
, up 8000 kmph 

LLkep  terminates 

without performing any librational loop, because the stopping criterion  or 0.8e  250 kmph   is encountered (see 

the ‘+’ symbol in Fig. 20d). The forward propagation shows an increase of the perigee altitude, because of SRP, 
while Sun   is less than  ; afterwards the perigee altitude starts decreasing, until encountering the surface 

 (visible in Fig. 9 for SpaceChip 1). At that point the trajectory in the phase-space presents an elbow which 

indicates that the final fast decay phase has started, due to the predominant effect of atmospheric drag. 
2 0e  

The third solution portrayed in Fig. 20, instead, performs, in the backward evolution, a librational loop around 
the equilibrium line Eq. (17), until meeting the stopping condition  (see the ‘+’ symbol in Fig. 20d). Fig. 

20d highlights that the orbit evolution analyzed in Section V.A (see Fig. 11) and Section V.B (see Fig. 17) do not 
represent a different behavior; in fact, they can be seen as a continuation with increasing values of the eccentricity of 
the initial condition vector 

, upp ph h

LLkep  selected on the long-lived orbits graph. The higher the value of eccentricity of the 

vector LL  (we are selecting as initial condition vectors points belonging to the branch Eq. (18) and Eq. (17), 

sorted in ascending order based on the value of the eccentricity), the higher number of librational loops appears in 
the backward propagation, and the smaller the radius of the cone that the trajectory will perform in the phase-space 
around the solution set of stable equilibrium Eq. (17), as can be seen in Fig. 20a. In other terms, the orbit evolution 
identified by vectors 

kep

LLkep  with higher values of eccentricity will be bounded within the cone described by the 

trajectory evolution identified by the vector of initial conditions LLkep  at the edges of the bifurcation region. This 

means, furthermore, that if we select any vector of initial conditions inside this bifurcation cone (which represent the 
boundary), the long-term evolution will be enclosed in the cone itself, and the motion will be librational and 
progressively decaying. This is highlighted in Fig. 20b, where an initial condition vector is chosen inside the cone, 
and the trajectory is propagated forward in time (black line). Moreover, it is interesting to note that all these 
solutions evolve towards their end-of-life through the bifurcation region, which can be seen (as already pointed out 
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for Fig. 17) as a sink for all librational-decaying trajectories which generate at higher values of the semi-major axis 
and eccentricities inside the bifurcation cone. Analogously, as shown in Section V.A (see Fig. 11), all the 
trajectories generated on the branch Eq. (18) ( 2 0a    and 2 Sun, 2     ), or the branch Eq. (19) (  and 2 0e  

2 Sun, 2     ) will evolve towards their end-of-life within the region of Sun   bounded by the two branches. 

Going back to the spiral trajectories shown in Fig. 20a, the higher the value of the eccentricity in the vector 

LLkep , the higher number of librational loops the spacecraft will perform from an upper value of the perigee 

altitude, until the final decay. As a consequence, the orbit lifetime from a fixed altitude to the decay is higher, as 
shown in Fig. 21. Fig. 21 shows the lifetime of the orbit, in logarithmic scale, with the eccentricity of the initial 
condition vector LLkep  identifying each trajectory. By comparing different spiral trajectories in Fig. 20a, it can be 

seen that when the trajectory arc in the phase-space between two consecutive librational loops (due to the effect of 
SRP) is more extended, the influence of the drag is higher on that arc, thus determining the satellite’s lifetime. 

For the same reason we can infer that if we select different initial conditions at a certain fixed semi-major axis, 
with different values of eccentricity, the orbit lifetime will be higher as the initial eccentricity will be chosen close to 
the equilibrium eccentricity for that value of semi-major axis and it will decrease going in a radial direction from the 
equilibrium value of the eccentricity). In fact, at fixed semi-major axis, the smaller the radius of the librational loop, 
the lower is the effect of drag and limited to a smaller part of the librational loop. To the limit, when a vector LLpke

Sun

 

is chosen along the solution set Eq. (17) (i.e., the radius of the librational loop is zero) with a sufficiently high value 
of semi-major axis, the orbit lifetime will be infinite, as the spacecraft is stable in that position, under the influence 
of SRP and the non-conservative effect of drag can be neglected. These solutions (without considering Earth’s 
shadow) were found by McInnes et al. for a solar sail mission application [18]. 

The decrease of the orbit lifetime is clearly a function of the increasing influence of atmospheric drag as can be 
seen in Fig. 24. For this test, different initial conditions have been selected with the same eccentricity,    and 

decreasing values of perigee height; those initial condition are indicated in Fig. 22 with a ‘+’ symbol and gray color 
scale. The trajectory has been propagated forward in time, under the influence of SRP and drag (continuous line) 
and drag-only (dashed line) and is represented in Fig. 22. Fig. 23a and Fig. 23b show the time evolution of the 
perigee altitude and the semi-major axis for the different trajectories, with SRP and drag and drag-only, while Fig. 
24 shows the orbit lifetime for the two scenarios, as a function of the initial perigee height of the orbit propagation. 

 

a) b) 
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c) d) 

Fig. 20 Long-term orbit evolution for SpaceChip 3 from set of vectors of initial conditions on the 
bifurcation region under the effect of SRP and drag. A gray color scale is used to differentiate the 
different initial conditions of the long-lived orbits graph. The ‘o’ symbol represents the initial condition on 
the long-lived orbits graph for the backward propagation, the ‘+’ symbol represents the stopping point of 
the backward propagation and the initial condition for the forward propagation, the ‘.’ symbol represents 
the end-condition for the forward propagation. a) Zoom on the points selected on the long-lived orbits 
graph. The axes of the graph are eccentricity, ω-λSun, and semi-major axis. b) Trajectory enclosed in the 
bifurcation cone. The axes of the graph are eccentricity, ω-λSun, and semi-major axis. c) Zoom on the 
decay phase. The axes of the graph are eccentricity, ω-λSun, and semi-major axis. d) 2D view of the 
solutions in eccentricity ‒ perigee height in logarithmic scale. 
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Fig. 21 Orbit lifetime of the solutions for SpaceChip 3 shown in Fig. 20. 
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a) b) 

Fig. 22 Long-term orbit evolution for SpaceChip 3 from set of vectors of initial conditions with the 
same eccentricity and ω-λSun, and different perigee height (gray color scale), under the influence of SRP 
and drag (continuous line) and drag-only (dashed line). The ‘+’ symbol represents the initial condition for 
the forward propagation, the ‘.’ symbol represents the end-condition for the forward propagation (i.e., 
orbit decay). a) 2D view of the solutions in eccentricity ‒ perigee height, and b) 2D view of the solutions in 
eccentricity ‒ ω-λSun. 

 

a) b) 

Fig. 23 Evolution of the Keplerian elements for the solutions in Fig. 22. The continuous line represents 
the SRP and drag scenario, the dashed line represents drag-only scenario. a) Perigee height, b) semi-
major axis in Earth radii. 
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Fig. 24 Orbit lifetime of the solutions for SpaceChip 3 shown in Fig. 22. The black line is the SRP and drag 
case, the gray line is the drag-only case. 

 
Finally, we point out that there exists a wider set of initial conditions for which the long-term evolution is 

characterized by a librational and progressively decaying motion. Those orbits can be identified as those which 
intersect the surface 2 Sun, 2    

Sun, 2

, as shown in Fig. 25 and Fig. 26 (in correspondence to the intersection with the 

surface 2      the partial derivative with respect to Sun   is zero as can be seen in Fig. 26b). In order to 

identify those orbits, the corresponding initial condition was chosen with Sun   

2 0a 

 and, fixing a value of semi-

major axis, the eccentricity must be lower that the eccentricity for which Eq. (17) is satisfied. These points are 
represented with a ‘+’ symbol in Fig. 25 and Fig. 26. Starting from these condition the forward and backward 
propagation were performed, to show the long-term behavior in the phase-space. As noted, these orbits are 
characterized by a librational and progressively decaying motion, however the decay phase will not be enclosed in 
the bifurcation cone shown in Fig. 20b. All these trajectories, similarly to the trajectories presented in Fig. 11, 
present an elbow in the phase-space in correspondence of meeting the surface    or . 2 0e  
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Fig. 25 Long-term orbit evolution for SpaceChip 3 for condition with librational and progressively decaying 
motion. 

a) 

b) 

Fig. 26 Long-term orbit evolution for SpaceChip 3 for condition with librational and progressively 
decaying motion. a) Zoom on the bifurcation region, and b) 2D view in eccentricity ‒ ω-λSun. 
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The higher the area-to-mass ratio, the more extended is the region of the phase-space domain where the motion 
under SPR and drag is librational, thus enlarging the sun-synchronous mission possibilities. Outside this region, 
instead, the motion is rotational (where Sun   continues to decrease). For a more extensive definition of rotational 

motion, see Ref. [19]. 

VI. Mission applications 

McInnes at al. [18] showed that a solar sail with a characteristic acceleration of 0.138 mm/s2 can be used for a 
geomagnetic tail mission on a 10 X 30 Earth radii, to artificially precess the apse line in Sun-synchronous manner. 
Oyama et al. [19] extended the analysis in the phase-space to study the global behavior of the solar sail orbits around 
the Earth; with respect to McInnes at al., a more extended useful region of the space-domain was identified for 
increasing the scientific return of the mission. In the present paper it was shown that the Sun-synchronous 
precession of the apse line can be artificially obtained also with a SpaceChip of 1 cm2 area and different thickness 
values, at different technology readiness levels of current nano-fabrication technologies. This concept can be 
adapted to enhance the return of a GEOSAIL mission. A swarm of SpaceChips can be used as distributed nodes of a 
network in the useful region of the phase-space, to obtain a spatial and temporal map of the geomagnetic tail, as the 
concept of Kilo-Satellite constellation concept, proposed by Petschek et al. [34]. The coupled effect of atmospheric 
drag and solar radiation, with asymmetry due to eclipses can be exploited to define the orbit lifetime and to assess 
and design the disposal of the SpaceChips at the end of mission. Importantly, the short life-time of high area-to-mass 
spacecraft can be greatly extended (and indeed selected) through the interaction of energy gain from asymmetric 
solar radiation pressure and energy dissipation due to drag. 

VII. Conclusions 

This paper analyzes the orbital dynamics of SpaceChips under the influence of solar radiation pressure and 
atmospheric drag. The high area-to-mass ratio, with respect to conventional spacecraft, allows the exploitation of the 
disturbances on the Keplerian motion as passive method to control orbit evolution without the use of active orbit 
control. The secular and long-period changes of Keplerian elements are computed through semi-analytic formulae. 
The initial conditions for long-lived orbits for SpaceChips are determined, by exploiting asymmetric solar radiation 
pressure to offset the effect of atmospheric drag. Through the long-term propagation of the orbit evolution we 
identified regions of the phase-space in which the motion of the spacecraft is librational and progressively decaying 
due to non-conservative energy losses due to drag. The asymmetric effect of solar radiation pressure allows a 
modulation of the orbit energy and angular momentum throughout a full librational loop and the sun-synchronous 
precession of the apse line. As a consequence, the orbit perigee oscillates between a minimum and a maximum 
value. The comparison with the drag-only and SRP-only scenario demonstrates that atmospheric drag acts as a 
damping on the oscillation due to SRP. When the orbit perigee passes through its minimum, the effect of drag 
becomes dominant. Subsequent librational loops evolve with smaller radius and librating around a center that moves 
towards lower values of semi-major axis and eccentricity. The bifurcation region near which the equilibrium 
solution under SRP and drag disappears can be seen as a sink for the librational motion trajectories generated at 
higher values of semi-major axis and eccentricities. Thus, the life-time of high area-to-mass spacecraft can be 
greatly extended (and indeed selected) through the exploitation of asymmetric solar radiation pressure, and the effect 
of drag can be exploited to obtain fast decay of these ‘smart dust’ devices in the terminal phase of the mission, 
dealing with issues related to end-of-life disposal and the creation of long-lived space debris from swarm of devices. 
For higher values of perigee height, a set of solutions is identified for which the orbit is in equilibrium under the 
effect of SRP only, and the influence of drag is negligible. These families of equilibrium and librational orbits are 
proposed as baseline for future SpaceChip swarm missions for geomagnetic tail observation; the high area-to-mass 
ratio allows an enlargement of the useful region of the domain for increasing the scientific return, and the low 
fabrication cost of these devices envisage their use for spatial and temporal distribution of the possible 
measurements. 
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