
 
 
 
Stevenson, G. and Nixon, P. and Ferguson, R.I. (2003) A general purpose 
programming framework for ubiquitous computing environments. In: 
Ubisys: System Support for Ubiquitous Computing Workshop (UbiCom), 
12 Oct 2003, Seattle, USA.
 
 
 
http://eprints.cdlr.strath.ac.uk/2597/
 
 
 
This is an author-produced version of a paper from Ubisys: System 
Support for Ubiquitous Computing Workshop (UbiCom). 
 
Strathprints is designed to allow users to access the research 
output of the University of Strathclyde. Copyright © and Moral 
Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. Users may download 
and/or print one copy of any article(s) in Strathprints to facilitate 
their private study or for non-commercial research. You may not 
engage in further distribution of the material or use it for any 
profitmaking activities or any commercial gain. You may freely 
distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints 
website. 
 
Any correspondence concerning this service should be sent to The 
Strathprints Administrator: eprints@cis.strath.ac.uk 
 

http://eprints.cdlr.strath.ac.uk/2815/


A General Purpose Programming Framework for
Ubiquitous Computing Environments

Graeme Stevenson, Paddy Nixon and Robert Ian Ferguson

The Global and Pervasive Computing Group
Department of Computer and Information Sciences

The University of Strathclyde
Glasgow, Scotland.

{firstname.lastname}@cis.strath.ac.uk

Abstract. It is important to note that the need to support ad-hoc and
potentially mobile arrangements of devices in ubiquitous environments
does not fit well within the traditional client/server architecture. We
believe peer-to-peer communication offers a preferable alternative due
to its decentralised nature, removing dependence on individual nodes.
However, this choice adds to the complexity of the developers task. In
this paper, we describe a two-tiered approach to address this problem:
A lower tier employing peer-to-peer interactions for managing the net-
work infrastructure and an upper tier providing a mobile agent based
programming framework. The result is a general purpose framework for
developing ubiquitous applications and services, where the underlying
complexity is hidden from the developer. This paper discusses our on-
going work; presenting our design decisions, features supported by our
framework, and some of the challenges still to be addressed in a complex
programming environment.

1 Introduction

The vision of ubiquitous computing [1], where large numbers of devices and sen-
sors are embedded into the physical environment, providing contextual services
to mobile users and applications, is progressing towards realisation. Increases in
the performance of handheld and embedded devices along with improvements in
networking technology are aiding this process.

Our previous work, the Strathclyde Context Infrastructure (SCI) [2], was
premised on the concept of an overlay network, designed to mirror the view of
how context aware services may be deployed, managed and used. The project
investigated approaches for the discovery, aggregation and delivery of context
information and was also concerned with identifying major research areas within
the field of ubiquitous computing.

One of the conclusions drawn from the implementation of that work was the
need for a framework to aid general application and service development for
ubiquitous computing environments. This paper presents our proposal for meet-
ing this need, discusses our design decisions, and presents some of the challenges
that remain to be addressed.



The remainder of this paper is structured as follows: Section 2 motivates
and proposes a framework for ubiquitous application and service development
along with a brief overview of some the characteristics that we believe make
peer-to-peer and mobile agent technologies appropriate for such a project. The
high-level design of the proposed framework is then presented in section 3. This
is followed by some of the challenges central to ubiquitous computing that still
need to be addressed in section 4, and related work in section 5. Finally, the
paper concludes with a summary and outline of future work in section 6.

2 Motivation

Building a distributed application is not a simple task. Many factors need to be
considered by the developer, such as component failures, network failures, se-
curity and remote communication. In ubiquitous computing environments there
are extra issues to consider, such as partial views of data, additional modes
of failure, personalisation of services and communication with third party, and
previously un-encountered entities in a heterogeneous environment.

Due to the complexity of such environments, we believe there is a large benefit
to be gained in providing developers with a programming framework to support
the development of ubiquitous applications and services. In addition to aiding
the creation of software which is capable of dealing with the above issues; it
is important that software remains reliable despite non-deterministic changes
within the network infrastructure, and that any approach addresses the need for
rapid application development.

We propose a two-tiered approach to meet this need: A lower tier for manag-
ing the network infrastructure and an upper tier providing the developer frame-
work. The lower tier uses peer-to-peer interactions to form an overlay for message
routing, network organisation, and component management; while the upper tier
employs mobile agent technology to hide the underlying complexity from the
developer, resulting in a high-level, general purpose framework for developing
applications and services.

It is important to note that the need to support ad-hoc and potentially mobile
arrangements of devices in ubiquitous environments does not fit well within the
traditional client/server architecture. We believe peer-to-peer communication
offers an appropriate alternative for building a reliable infrastructure for two
reasons: Firstly, its decentralised nature offers good scalability characteristics
nature and is therefore better equipped to deal with an unpredictable number of
users and devices. Secondly, single points of failure and bandwidth/processing
bottlenecks are avoided through removing reliance on individual nodes. Although
this decision adds complexity to the programmers task, it is believed that the
advantages of this design choice greatly outweigh any disadvantages.

The decision to use mobile agents as the basis for the framework was made on
several levels. Firstly, by nature they encapsulate units of functionality, making
them an easy to work with abstraction for component based programming [3].
Secondly, to enable users to transfer applications from one device to another



without requiring any pre-installation of code on the target device (for example,
from a handheld to a desktop PC when a user enters their office). Thirdly,
in a decentralised environment, mobile agents provide the ability to perform
distributed searches based on user specific criteria without requiring transmission
or retention of all results. Finally, mobility allows application components to
dynamically move processing closer to the sources of information they require.
This has potential uses for global processing of contextual information [4].

3 Overview of the Design

The high level design of the framework and supporting infrastructure can been
seen in figure 1. This section gives a detailed overview of some of the features it
supports and the design goals that we are aiming to achieve.

Fig. 1. A high-level overview of the framework

Self Organising Network Infrastructure. Ubiquitous environments are non-
deterministic in terms of the number of users they are required to support,
availability of resources and connectivity of devices. Due to the high scalability
requirements of such environments, it is very unlikely that any one configuration
of the above elements will remain static for any length of time. This makes it
important that the underlying infrastructure can adapt to changes quickly and
efficiently with minimal disruption to users. To facilitate this, we implement a
scheme where nodes within the infrastructure are responsible for maintaining
information about a small subset of other nodes, reducing the work required to
adjust to changes in the environment. This is similar to the approach taken by
second generation peer-to-peer systems such as Chord [5] and Pastry [6].

Distributed Processing of Contextual Information. One advantage of
using a peer-to-peer model for the network infrastructure is that it provides a
way of harnessing resources provided by peers. These resources, which would
otherwise be wasted, can be utilised by the infrastructure in different ways.

Idle CPU time across peers can be used to support the processing of the
vast amounts of context information that are likely to be generated and used
within a wide scale ubiquitous system. Combined with mobility, these features



facilitate the implementation of a distributed engine for context processing whose
components can optimise their network position relative to the data they are
operating on.

Distributed Storage for User Information. Another peer resource that can
be harnessed is disk storage. As we discuss later, personalisation of services is
a major challenge that ubiquitous environments need to address. One of the
reasons this is a complex requirement is due to the lack of an obvious location to
store information about a user. Many users may make use of a communal device
or may require access to specific information from a number of independent
devices. These reasons make it impractical to store user information at a single
location due to memory constraints and fault tolerance requirements. Users are
also likely to be mobile, requiring personalisation of services as and where they
travel. Requesting that users carry their data with them is both inconvenient and
impractical. The framework will address this issue by utilising storage capacity
within the infrastructure to provide users with an encrypted, distributed data
store, accessible from any node within the infrastructure. We aim to draw upon
the experiences of research projects such as Freenet [7] and Oceanstore [8], which
have achieved success in providing long-term data storage over volatile peer-to-
peer overlays, to achieve this goal.

An Adaptive Protocol Stack. The important advances in technology usually
happen at the edges of a network. Often, perhaps for security or data compression
reasons, there is a need to develop new protocols. When this requirement clashes
with the need for backwards compatibility with legacy components, problems
arise for developers. In ubiquitous environments, these problems will be common,
as functionality will regularly be provided through the integration of third-party
components.

We propose an adaptive protocol stack as part of our framework to solve
this problem. This approach involves the use of mobile agents to encapsulate
protocols. Using this technique, a protocol stack can be dynamically assembled
or altered at runtime based on communication requirements, customised for
application specific needs.

For example, consider two components which would normally communicate
using HTTP. At some point after deployment, the owner of the first component
wishes to implement an upgrade, developing a customised protocol for encrypting
data in order to provide security whilst operating in an un-trusted environment.
This protocol sits between the HTTP and socket layers. When the updated
component wishes to communicate with the second component, the new proto-
col can be deployed and installed by the second component into its protocol stack
at runtime, in order to achieve secure communication. Should the second com-
ponent refuse to add the protocol to it’s stack, the first component can decide
to drop its requirements for secure communication and revert to using HTTP
with un-encrypted data.



Location Independent Communication between Components. As the
basis for ubiquitous computing, communication between distributed application
and service components, from a developers perspective, needs to be as straight-
forward as possible. Once a reference to any component is obtained, interaction
should appear as simple as performing a local operation. However, flexibility is
also required within the programming model for dealing with a range of failure
semantics.

Fault Tolerant Global Referencing for Components. Within the infras-
tructure, there is a need to aid functionality such as component location, com-
munication and migration at the mobile agent layer. Putting fault tolerant and
robust algorithms in place for these features at a lower level reduces the work
required of application or service developers.

One of the most common tasks performed within the infrastructure will be
to locate a component. From a mobile agent perspective, the suitability of exist-
ing algorithms depends very much on the application under development, with
existing algorithms exhibiting either a central point of failure or poor scalability
characteristics [9]. This is obviously not acceptable within ubiquitous environ-
ments.

In contrast, one of the central features of recent peer-to-peer systems is that
of efficient distributed object location. Pastry [6], for example, assigns a global
identifier to each node and provides guarantees that a message addressed to a
node will be delivered to the live node with the identifier closest to the intended
recipient.

Our infrastructure will employ an algorithm for locating components that
can provide similar guarantees to the above approach, but taking into consid-
eration that due to mobility, components are not fixed to a single node. This
requires the additional guarantee that should the node responsible for managing
a component’s location information fail, there will always be another live node
able to provide the same information.

There are two invariants for this algorithm. Firstly, if a component is active,
it will always be locatable, regardless of it’s position within the network and
irrespective of network conditions. Secondly, should a reference exist to a com-
ponent that has been removed from the network, the infrastructure will be able
to correctly detect and report this fact.

In addition to supporting the location of components, similar techniques will
also be applied to a components codebase, providing completely decentralised
component management at the mobile agent layer. This will result in the removal
of all single points of failure exhibited by current mobile agent systems.

Application Specific Approaches to Disconnection Management. In
tandem with the above algorithm, the ability to dynamically deploy components
without pre-installation of code allows for the development of application specific
proxies that can be used to store or react to information should a user lose their
connection to the network. Reconciliation can then be performed upon a user
reconnecting to the network. In practice, this will involve the specification of



‘backup’ components within a component’s location information, allowing for
proxies to be activated and contacted should a component become unreachable.

4 Challenges to be Addressed.

Ubiquitous computing can be regarded as a harder, more complex version of
distributed computing. As mentioned above, there are many challenges that need
to be addressed towards the goal building a framework for ubiquitous computing.
This section gives a taste of some additional issues that need to be taken into
account:

No Known Boundaries for Scale. There are no pre-defined scales for mod-
elling ubiquitous environments. Modelling may be required for desks, rooms,
buildings, cities, even countries. Traditional network addressing schemes do not
scale and for this reason, can not be applied to ubiquitous environments. Work
is required to find useable alternatives that are able to support locality within
such infrastructures.

Support for Autonomy. This is one of the key issues in ubiquitous comput-
ing: How do we build software that is self-managing and able to adapt to its
environment, current task or user with a minimum of human interference? One
position is that prepackaged applications are undesirable, with research being
targeted towards producing mechanisms for the runtime composition of applica-
tion components based on user requirements and available context information
[10].

The Need for Personalisation. Another challenge is the need to personalise
services for users. Not only does this include the storing of preferences directly
specified by a user but also providing mechanisms that allow applications to
derive information from a user’s past experiences with similar or related appli-
cations. In order to provide truly useful service delivery, information about a
user’s current context also needs to be taken into account. As discussed above,
one of the requirements to support this feature is a facility for storing user in-
formation that can be reliably accessed from any node in a network.

Security and Privacy within Ubiquitous Environments. Providing se-
curity within a ubiquitous environment is a complex task. For scalability rea-
sons, many techniques used within client/server systems cannot be applied to
such decentralised environments, with the emerging paradigm of dynamic trust
modelling offering a potential solution. There are many factors that need to be
addressed. These include: Providing mechanisms for secure communication (en-
cryption and routing) between components, ensuring the privacy of user data,
providing integrity checks that can be used to detect component tampering, let-
ting owners restrict the use of their components and allowing users to control
access to the data they make available to applications and services. Providing
fault tolerance mechanisms that are able to detect and deal with faulty or ma-
licious nodes are also required.



5 Related Work

While there is no room in this paper for discussion; there are several related
projects which focus on providing system support for ubiquitous environments.
We briefly mention two:

The one.world framework [11] supports a component-oriented approach to
application development, focusing on the separation of data and functionality,
and exposing change to promote application level handling. Each node in the
system may contain many environments - the containers for application com-
ponents and data. Support for the migration of environments between nodes is
provided to aid service adaption.

Project Aura [12] focuses on user mobility within ubiquitous environments.
Each user has a personal Aura which marshals the resources required to sup-
port their current task within their physical context. Through monitoring their
environment, the Aura framework captures information about the user’s task,
preferences, and intentions, using this information to “shield the user from the
heterogeneity of computing environments as well as from the variability of re-
sources.” When users move from one environment to another, Aura manages
the migration of all the information related to their task, and negotiates task
support within the user’s new environment.

For a complete discussion of related work, we refer the reader to [13].

6 Summary and Future Work

This paper has presented the high level design of a programming framework
and supporting infrastructure for developing ubiquitous applications and ser-
vices. Within this design, peer-to-peer technology is used for network and mobile
agent management, while mobile agent technology abstracts over the underlying
complexity to provide a framework for fault tolerant application and service de-
velopment. Key features include robust, decentralised algorithms for location in-
dependent component communication; a secure, distributed data store for hold-
ing user data; and an adaptive protocol stack for customisable communication
between components that eliminates problems with backwards compatibility.

Through the implementation of our previous project, SCI [2], we formed an
understanding of the requirements for developing ubiquitous applications, pro-
viding the basis for this project. One of the open issues we identified is how best
to evaluate solutions to problems within this domain. In addition to furthering
our requirements analysis, this is one of the issues we hope to gain insight into
through this workshop.

While the limits imposed by available resources will constrain deployment of
the infrastructure, we aim to deliver experimental results through a three step
process: Reasoning about the scalability of the design by analysing the algo-
rithms it uses for network and component management; performing simulations
to examine performance and reliability under a set of hypothetical network con-
ditions; and constructing a prototype of the infrastructure along with sample
applications as proof of concept.



Acknowledgements: This work is supported by the EU FP5 GLOSS Project
(IST-2000-26070), in collaboration with Trinity College Dublin, Université Jose-
ph Fourier, The University of St Andrews, and through research student schol-
arships from the University of Strathclyde.

References

1. Mark Weiser. The computer for the 21st century. Scientific American, 265(3):94–
104, September 1991.

2. Richard Glassey, Graeme Stevenson, Matthew Richmond, Paddy Nixon, Sotirios
Terzis, Feng Wang, and Ian Ferguson. Towards a middleware for generalised con-
text management. In 1st Int. Workshop for Middleware for Pervasive and Ad Hoc
Computing, Middleware 2003 companion, pages 45–52, Rio de Janeiro, Brazil, June
2003.

3. M. Wooldridge and N. R. Jennings. Software engineering with agents: Pitfalls and
pratfalls. IEEE Internet Computing, May/June 1999.

4. A Dearle, GNC Kirby, R Morrison, A McCarthy, K Mullen, Y Yang, RCH Con-
nor, P Welen, and A Wilson. Architectural support for global smart spaces. 4th
International Conference on Mobile Data Management (MDM 2003), Melbourne,
Australia, 2003.

5. Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of the 2001 ACM SIGCOMM Conference, pages 149–160, 2001.

6. Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. Lecture Notes in Computer
Science, 2218:329–350, 2001.

7. Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A
distributed anonymous information storage and retrieval system. Lecture Notes in
Computer Science, 2009, 2001.

8. John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton, Dennis Geels, Ramakr-
ishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westly Weimer, Christopher
Wells, and Ben Zhao. Oceanstore: An architecture for global-scale persistent stor-
age. In Proceedings of ACM ASPLOS. ACM, November 2000.

9. Pawel T. Wojciechowski. Algorithms for location-independent communication be-
tween mobile agents. Technical Report DSC-2001/13, Dpartement Systmes de
Communication, EPFL, March 2001.

10. Simon Dobson. Applications considered harmful for ambient systems. Unpublished
work.

11. Robert Grimm. System support for pervasive applications. PhD thesis, University
of Washington, December 2002.

12. J.P. Sousa and Garlan D. Aura: an architectural framework for user mobility in
ubiquitous computing environments. In 3rd Working IEEE/IFIP Conference on
Software Architecture, pages 25–31, Montreal, August 2002.

13. Graeme Stevenson. Peer-to-Peer and Mobile Agent Systems: Enabling technolo-
gies for pervasive computing? Technical Report Smartlab-2003-02, Department of
Computer and Information Sciences, University of Strathclyde, Glasgow, Scotland,
June 2003.


