Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Towards a multidisciplinary user-centric design framework for context-aware applications

Bradley, N.A. and Dunlop, M.D. (2003) Towards a multidisciplinary user-centric design framework for context-aware applications. In: Proceedings of 1st UK-UbiNet Workshop. Springer.

[img]
Preview
Text (strathprints002558)
strathprints002558.pdf
Accepted Author Manuscript

Download (970kB) | Preview

Abstract

The primary aim of this article is to review and merge theories of context within linguistics, computer science, and psychology, to propose a multidisciplinary model of context that would facilitate application developers in developing richer descriptions or scenarios of how a context-aware device may be used in various dynamic mobile settings. More specifically, the aim is to:1. Investigate different viewpoints of context within linguistics, computer science, and psychology, to develop summary condensed models for each discipline. 2. Investigate the impact of contrasting viewpoints on the usability of context-aware applications. 3. Investigate the extent to which single-discipline models can be merged and the benefits and insightfulness of a merged model for designing mobile computers. 4. Investigate the extent to which a proposed multidisciplinary modelcan be applied to specific applications of context-aware computing.