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Abstract. The rapid development of collaborative environments over the internet

has highlighted new concerns over security and trust in such global computing

systems. The global computing infrastructure poses an issue of uncertainty about

the potential collaborators. Reaching a trusting decision in such environments

encompasses both risk and trust assessments. While much work has been done

in terms of modelling trust, the investigation of the management of trust lifecycle

issues with consideration of both trust and risk is less examined. Our previous

work addressed the dynamic aspects of trust lifecycle with a consideration of

trust formation, exploitation, and evolution. In this paper we provide an approach

for formalizing these aspects. As part of the formalization of the trust lifecycle,

we introduce a notion of attraction to model the effect of new pieces of evidence

on our opinion. The formalization described in this paper constitutes the basis of

ongoing work to investigate the properties of the model.

1 Introduction

Increasing interest in collaborative applications for accomplishing difficult distributed

tasks in the global computing context (Internet and other large networks) has led to an

increased awareness of the security issues in such a dynamic and open environment

[5], [4]. It is becoming widely acknowledged that traditional security measures fail to

provide the necessary flexibility for interactions between mobile autonomous entities,

due to statically defined security policies and capabilities. The global computing setting

precludes reliance on some central control authority, which in traditional systems would

have full knowledge of all the entities within the system. One approach that has been

suggested to help alleviate these problems is the concept of trust [7], which in analogous

situations in human society has proved to be effective in allowing unknown entities

to learn to determine how each other are likely to behave based on evidence that is

available for evaluation. In the SECURE project[9], we are providing an approach that

considers risk and trust to secure collaborations between entities. At the heart of the

SECURE approach lies the formal trust model [2] and risk model [1].



In a global collaboration environment, mobile entities form ad-hoc collaborations

in order to achieve their goals. These entities might represent persons, devices, or their

software agents. Every entity that needs to make trusting decisions is defined in our

model as a principal in a set P. A collaboration involves a number of actions belonging

to the set A, the set of all possible actions. Although a collaboration in the general

case might involve multiple actions and principals, in this paper we restrict ourselves to

single action collaborations between two principals. We call such collaborations simple.

Thus, a simple collaboration is defined as follows:

Definition 1 (Simple Collaboration). Given a set P of principals and a set of actions

A, a simple collaboration C between pi and pe elements of P is defined as a triple

(act, pi, pe) , where

⊲ pe is the executor of the action,

⊲ pi is the initiator of the action,

⊲ act denotes the action (actions could be parameterized) that pi wants to perform

and is an element of A, the set of actions.

The starting supposition is that one of the two collaborators (pi) sends a request to pe
asking for permission to perform the action act. Since the environment of collaboration

is characterized by a high level of uncertainty about the identity and trustworthiness of

the collaborators, a trusting decision needs to be made. In such a situation both trust

and risk assessment play a crucial role in establishing collaboration, in the sense that no

trusting decision is required if there is no risk involved in executing the action. This is

the reason for having trust and risk models underpinning the SECURE project.

The structure of the paper is as follows: section 2 describes the formal model of

the trust-based decision maker with its components. Section 3 discusses the trust policy

languages. We conclude and state the future work in section 4.

2 Trust-based decision maker

The approach we are taking in the SECURE project is to develop a dynamic model

of trust to provide entities with the ability to collaborate and make security related

decisions autonomously. A trusting decision will be reached by weighing the trust in-

formation of the principal and the risk assessment for the requested interaction. The

cyclic relationship between trust and risk implies that on one hand, trust is a parameter

in the risk assessment, while on the other hand risk is a parameter in the trust evolution

process.

Figure 1 illustrates the structure of the decision maker that incorporates four com-

ponents: a trust engine, a risk evaluator, a trust lifecycle manager, and an evidence

repository. For a trust-based decision to be made, the trust engine supplies the risk eval-

uator with the trust information that would help in reasoning about the risk involved in

the collaboration. For example, a trustworthy principal behaves in a way that increases

the probability of high benefits and reduces the probability of high costs. The decision

is based on the risk aversion of the deciding principal and the expected costs/benefits of

the interaction as they are dictated by risk analysis. The trust information , in the form



of evidence from interactions, collected and processed by the trust lifecycle manager

will be fed into the risk evaluator and the trust engine to be used in future interactions.

Trust information or values may be stored in memory to represent historical information

on the behavioural patterns of specific entities. The functionalities of these components

are further discussed in the following subsections.

Risk Evalautor

Evidence Store

Trust Engine

Trust L.cycle M.

Fig. 1. The trust-based decision maker

2.1 Trust Engine

The aims of the trust engine are to update trust information based on the accumulation

of evidence and to supply the risk evaluator with the required trust information for

handling requests and reaching decisions.

In the global computing setting, the set of active principals is very large. Therefore,

every principal has its own trust values on a finite set of other principals and associates

unknown to the rest (unknown is interpreted as having no evidence for trust or distrust).

In the trust engine [2], the global trust of the system is expressed as a function (m)

mapping principals (P ) to a function from principals to trust information (T ). Formally

we have:

m : P → P → T

meaning that m applied to a principal a and then to a principal b would return the trust

value m(a)(b) ∈ T expressing a’s trust in b. The set T is a set of trust values, whose



elements represent degrees of trust. The set T has two orderings ¹ and ⊑ such that

(T,≤) is a complete lattice and (T,⊑) is a complete partial order (c.p.o.) with a bottom

element. The two orderings (¹ and ⊑) that defined on the set T are:

The first ordering (¹) is the trust ordering, that allows the qualitative comparison

of trust values. For example, in a complete lattice (T,≤) that expresses a set of trust

labels (low,medium, high) the value high reflects ”more trust” in comparison to the

value medium.

The second ordering (⊑), the trust information ordering, represents the quantity of

available trust information for a principal. In essence this enables the comparison of the

precision of trust information.

Following these two orderings, we can construct the triple (T,≤,⊑) starting with

a complete lattice, (D,≤), and considering the set of intervals of type [d0,d1] over D.

The ¹ ordering on this set of intervals allows the construction of a complete lattice

of intervals which can be allocated as trust values. For example, the interval [medium,

high] represents higher trust than the interval [low, medium].

The ⊑ ordering considers the intervals’ width, which can be thought of as repre-

senting the amount of uncertainty. For example, the interval [low,medium] represents

less uncertainty in comparison to the interval [low, high]. In fact, the interval expresses

that the exact trust label could be either low or high.

Each principal has a trust policy that expresses how the principal plans to compute

its own trust information (for examples of policies see section 3 of this paper). The

global trust function m will be computed from the collection of all the policies (one for

each principal).

There are two operations defined in the trust engine: update and trust. The update

method modifies the state of the engine with new observation, and the trust method

returns a trust value for a principal. Local policies compute the trustworthiness of the

principal.

2.2 Risk Evaluator

The function of the risk evaluator is to reason about the risk involved in the interactions

between principals. The risk evaluator helps in reaching decision under the circum-

stances of uncertainty. For this reason the whole process of the risk evaluation is based

on investigating the likelihood of potential costs or benefits of the possible outcomes.

Each action is associated to a set of possible outcomes. Each outcome has an associ-

ated subjective family of cost-probability density functions (cost-pdfs)[1]. The cost-pdfs

represent the range of possible costs and benefits that may be incurred by the user for

each outcome, reflecting variations in principal behaviour. Actions might have parame-

ters associated with them. In this case, the action parameter may affect the values of the

costs/benefits.

The trust information that is provided by the trust engine selects one cost-pdf from

the family of cost-pdfs for each outcome. The selected cost-pdf for each of the indepen-

dent outcomes are combined and analyzed according to a security policy, to facilitate

a decision on the requested action. The decisions need not be binary, in the sense of

“accept or reject”, but may also encode some other decisions, i.e. asking for more in-

formation.



The approach we are taking in the SECURE project is to incorporate trust and risk

for trust-based decision making for collaboration between entities. Reasoning about risk

and trust indicates the mapping relationship between users’ trustworthiness and users’

profile of expected behaviour (cost-pdfs).

2.3 Trust Lifecycle Manager

The dynamic aspects of the model such as how trust is formed, how trust evolves over

time due to available information and how trust can be exploited are collectively re-

ferred to as the trust lifecycle. Therefore, the trust lifecycle manager evaluates trust

information and reflects that on the level of principals’ trustworthiness. The processes

of trust formation and trust evolution are slightly different. Formation differs from evo-

lution in that additional evidence might be actively sought for formation, while evolu-

tion refers to the process of changing one’s estimation of trust based on gathered trust

information from interactions.

There are two main sources of trust information (evidence): observations and rec-

ommendations. Personal observations are gathered after each collaboration is complete.

Personal observations of the entity’s behaviour are essential for the subjective evalua-

tion of trustworthiness; therefore the outcome of collaborations is recorded and stored

as evidence for future collaborations. Recommendations from trusted third parties pro-

vide the possibility for trust regarding unknown entities to be propagated.

It is important to state that we would expect personal observations to influence trust

to a greater degree than recommendation, therefore it is important to weight the evi-

dence dependent on the source of the information. Since trust is a subjective notion, our

own trust information has more merit in the sense that we have first hand knowledge of

the whole circumstances of the interaction. Recommendations, however, are passed on

as a trust value, which conceals much of the supporting information. The process of rec-

ommendation becomes more important in cases where we have no personal interactions

with the entity in question.

In [6], we introduced the notion of attraction. The attraction represents the effect

of a new piece of evidence on the current trust value. The new evidence (either from

observations or recommendations) has some influence on our opinion, in the sense that

it “attracts” our opinion towards it.

Definition 2 (Attraction). An attraction att is a pair (τ, ι) where τ is the direction of

the attraction and ι is the power (strength) of the attraction.

The attraction operates by using the two orderings: trust ordering (¹) and informa-

tion ordering (⊑). Accordingly, we have that:

⊲ The direction of the attraction, τ, is determined by the trust ordering. Relative po-

sitioning of the two trust values according to the trust ordering, i.e. trust positive,

trust neutral and trust negative. For example, if Tcurr = [low, medium] and Tevd =

[medium, high] then the trust value from evidence is trust positive.
⊲ The power (strength) of the attraction, ι, is determined by the information or-

dering. Relative strength of the two trust values is determined by their position-

ing on the information ordering c.p.o. For example, if Tcurr=[low,medium] and

Tevd=[medium,high] then the trust value from evidence is conflicting.



The power (strength) has the following properties:

⊲ The stronger the new piece of evidence, the stronger the attraction (τ and ι) is.

⊲ The stronger our opinion the weaker the attraction.

⊲ A supporting evidence reinforces our opinion.

⊲ A contradicting evidence undermines our opinion.

Before describing the application of the notion of attraction and its two functions to

observations and recommendations, we will discuss the evaluation of observations and

recommendations.

Observation. Observation is defined as the observed cost-benefit for each outcome

upon completion of an interaction (ocb-outcome). The evaluation function takes place

after completing an interaction and obtaining some observation. Formally the evaluation

of observation is achieved by the function eval(). This function takes as arguments the

current trust value (Tcurr) and the observed costs-benefits of the outcomes and returns a

trust value.

As described above in the risk evaluator, the outcomes are associated with their

potential cost and likelihood. Incorporating the trust model and the risk model allows us

to choose the best cost-pdf for the outcomes. By reaching a decision, a prediction of the

expected cost/benefit of the outcomes will be made. The evaluation function determines

the level of trust in the principal based on the one piece of evidence, by comparing the

current trust value used to initiate the collaboration with the observed cost/benefit (ocb-

outcome). The evaluation function must therefore be able to determine the correct trust

value which corresponds to the ocb-outcome, to enable the determination of the relevant

trust value. This is achieved through the use of a reversible mapping from cost/benefit

to trust values.

The evaluation function evalactp : T ×Outcomes→ T , where Outcomes is the set

of possible outcomes and T is the set of trust values. The function takes a pair (ocb-

outcome, Tcurr), where ocb-outcome represents the observed cost/benefit and the Tcurr
represent the current trust value that was in use before establishing the interaction. The

evaluation function provides an insight into which cost-pdfs would have been the more

accurate predictors of the outcome of the interaction (i.e. which set of cost-pdfs would

have provided the highest likelihood for the observed costs-benefits). This evaluation

function produces a trust value (i.e. the trust value that would have picked this set of

cost-pdfs). The evaluation function eval() could be defined as,

eval
act
p = eval(Tcurr, ocb-outcome,C) = eval(Tcurr, ocb-outcome,act, pe, pi)

where act is the action and pe and pi are the principals. Following this approach ev-

idence might be stored with two indexes identifying the action and the principal who

performed the action. This allows us to look up the history of evidence by either the

principal or the associated action.

Recommendation. Recommendations are defined as,

rec : P → P → T



For example if a,b ∈ P (P is the set of principals) we can say that rec(a)(b) is a’s

trust value for b. We seek recommendation for further information when the amount

of observations is insufficient. Accordingly, we request recommendations, with respect

to the principal in question, from trusted third parties. Trusted third parties pass on

their opinion on the principal in question as a trust value. This trust value summarizes

their own observations. Having recommendations based on third parties’ observations

prevent us from receiving second hand recommendations.

Assumption 1 (Uniform Behaviour).

We only consider recommendations from principals that observe uniform behaviour

to us, In the sense that we observe similar profile of cost/benefit probability mass.

The driving force behind this assumption is that we only consider recommendations

provide information useful to us. Unless we observe similar behaviour then a recom-

mendation is misleading.

There is an issue of discounting recommendations. The current state of our formal-

ization does not incorporate a notion of discounting recommendations. We are consider-

ing this issue in our agenda of future work. The discounting will change the trust value

before its evaluation otherwise the approach is the same.

The way we deal with recommendations is similar to observations by calculating

their respective trust values’ attraction. Each piece of evidence (either from recom-

mendations observations) has its own attraction on our trust value.The core step of the

evolution of trust values is the application of the following two attraction-functions to

the new piece of evidence.

As said above, the attraction-functions correspond to the notion of the two orderings

of the trust engine (trust ordering and information ordering). Therefore, we have two

attraction-functions: trust function (τ-function) and information function (ι-function).

These two functions take as arguments the current trust value Tcurr and the trust value

from the piece of evidence (for simplicity called Tevd), be that from an observation

(after the application of the eval() function) or from a recommendation (note that the

recommender is just providing a trust value).

τ-function. This function takes the current trust value (Tcurr) and the trust value from

evidence (Tevd) and produces a trust-attraction value (τ-value). Formally we can de-

scribe the function as:

τ(Tcurr,Tevd)= τ-value

These trust-attraction values belong to a domain that is divided into trust increas-

ing, trust decreasing and trust neutral values. A trust increasing value cannot lower,

according to the trust ordering, our current trust value. For example, if Tcurr is [medium,

medium] and Tevd is [medium,high] that means the new trust values cannot be lower

than [medium, medium]. Similarly a trust decreasing value cannot increase our current

trust value. While a trust neutral value can neither increase nor decrease our current

trust value. If the trust-attraction value is positive, negative or neutral depends on the

relative position on the trust ordering lattice of the two trust values, arguments of the

τ-function.



ι-function. This function also takes the current trust value Tcurr and the trust value

from evidence (Tevd) and produces an information-attraction value (ι-value). Formally

we can describe the function as:

ι(Tcurr,Tevd)= ι-value

These information-attraction values belong to a domain that is divided into conflict-

ing, reinforcing and neutral values. To determine which value of the domain the ι-value

belongs to, we follow these conditions:

⊲ The maximum reinforcing value is returned when the greatest lower bound (g.l.b.)

according to the information ordering of the two arguments is equal to the current

trust value(Tcurr).

⊲ The maximum conflicting value is returned when the g.l.b. of the two arguments is

equal to the least element of the information ordering.

⊲ A neutral value is returned when the g.l.b. of the two arguments is equal to the trust

value from the evidence.

The exact measure of the ι-attraction value has the following relationship to the

strength (number of labels included in interval) of the arguments and the overlap(number

of common labels):

(Strength (evidence trust)/Strength (current trust))*(Overlap)

The maximum strength for a trust value is assigned to values that have no other trust

value greater than them according to the information order, while the minimum strength

is assigned to the least element of the information ordering c.p.o. The rest of the strength

values reflect the number of trust values that are greater than the value in question

according to the information ordering. The overlap reflects the level of contradiction or

reinforcement of the two trust values and as was described above depends on the relative

position of our current trust value to the g.l.b. of two arguments of the ι-function.

Applying the two attraction functions (ι-function and τ-function) to the new piece

of evidence produces a pair (τ,ι)that will be used to update the current trust value (Tcurr).

The update function. The update function, update(), takes as input the pair (τ, ι)

and the current trust value (Tcurr), producing a new trust value (Tnew).Formally, we can

describe the update() function as:

update((τ, ι),Tcurr)=Tnew

The two attraction values are in fact excluding certain trust values as a possibility for

the new trust value. The τ-attraction excludes values based on their position on the

trust ordering lattice, while the ι-attraction excludes values based on their position on

the information ordering c.p.o. For example, a trust increasing value τ-value would

exclude all trust values for which the current trust value is greater than according to

the trust ordering. Similarly, a contradicting value ι-value will exclude all trust values

that are greater than the current trust value according to the information ordering. These



functions will result in two subsets (τ-set and ι-set ⊆ T ) of trust values each consistent

to the evaluation of the new piece of evidence according to the each ordering. The new

trust value Tnew ∈ τ-set
⋂

ι-set. The exact functions for the determination of the new

trust value depends on the application.

2.4 Evidence Store

In our model the position is taken that the trust information is stored in order to allow

us to reason about principals’ trustworthiness in future interactions. Therefore, we in-

troduce a structure called the evidence store. The use of a layered structure (Figure 2) to

store trust information provides a greater depth of information upon which to base any

decision than merely storing the individual trust values relating to the entity in question.

The following points discuss these layers of the evidence store and the operation

functions between the layers:

1. The base layer contains lists of all observations or recommendations. The output of

the evaluation function eval()will be stored in these lists. There is a fixed size for

each one of these lists. When adding a new experience, the size of the list (L) will

be checked. If L has some space, then the new piece of evidence will be added to

the previous ones. When L is full, the attraction of old observations or recommen-

dations will be calculated and then cleared so as to add the new one. In this way, all

evidence in the history of the principal’s interactions is reflected in the trust value

even though the observations themselves are discarded. The trust update function

update() produces a trust value (Tobs)that will be stored on the second layer. The

update of the evidence will take place separably, for recommendations and obser-

vations, to allow us to determine a trust value that purely based on observations

(Tobs). This facilitates the process of giving recommendations upon receiving rec-

ommendation requests.

2. The second layer in the structure contains a trust value (Tobs) specific to observation

and a trust value (Trec) reflects the attraction of all the received recommendations.

The new final Tcurr to be used for decision making can be calculated using the

attraction notion in two ways. The first approach is to apply the attraction of Trec on

Tobs to produce a new trust value that will be stored as (Tcurr)in the top layer. In the

second approach we apply the attraction of both Trec and Tobs on the current trust

value (Tcurr)that is stored in the top layer and produce a new trust value. The result

of these two operations produce a trust value that will be stored in the top layer.

3. The value in the top layer influences the trust engine, which invokes the trust

method. In this way, the local trust policy will be updated in the light of this new

trust value.

3 Trust Policy languages

In this section we show how to express what was said in the previous sections using a

language for describing policies.



Tcurr
(Stored or combined from layer below)

Tobs Trec

Evidence layer (list of all observations and received recommendations)

Fig. 2. The Trust Information Structure

3.1 The Policy Language

In [2] we defined a general setting, where policies are specified via a language. For-

mally, policies are functions of type P → T such that for each principal a they return

a trust value. The language permits the specification of these functions. A policy lan-

guage has the form λx : P .τ where τ specifies the returned value of the policy, done

by using certain operators. One of these operators is the operator p·q, called delegation.

For instance the policy λx : P .paq(x) specifies the function that, for any principal b∈ P ,

returns a’s trust in b. Delegation makes policies dependent on the global trust m. The

function m is defined as the least fixed point of all policies (see the reference for more

details and formal semantics).

The operator of delegation can also be combined with other operators provided from

the language. For instance we could write a policy which says that our trust in b is a’s

trust in b but for any other principal c it will be the least upper bound between a’s trust

in c and a threshold value [d0,d1]:

λx : P .(x = b) 7→ paq(x);([d0,d1]⊓paq(x))

where the operator · 7→ ·; · is semantically equivalent to an if-then-else and ⊓ is the l.u.b.

in lattices.

3.2 Encoding in the policy language

The encoding in the policy language is done by exploiting two features: the syntax of the

policy and the structure of the set T . When we give a policy π written in the language

we give an algorithm for computing a function. Hence, when writing the policy, we

“store” some information in the syntax of the language which means that it is possible

to record the current trust value.

Representing the various layers of the evidence repository could be handled by giv-

ing more structure to the set T . Suppose that the initial set of trust values (as the one

of the previous sections) is Tval , provided with an information ordering ⊑ and a trust

ordering ¹ as required. Then we can define a new set T as

T = [EVD]×Tobs×Trec



where [EVD] is the list of observations, e.g. [evd1, . . . ,evdn] ∈ [EVD] for evd1, . . . ,evdn
evidences. This means that our policy contains a list of evidences (as shown in the base

layer of the evidence repository), and two trust values (as shown in the second layer):

the first one which refers to the current trust value based on observation (which is then

a constant in the syntax), and the second one which refers to the value updated with

recommendations.To describe these trust values as a policy, we will initially start from

the situation where there is no observations or recommendations. Therefore, the policy

could be defined as:

πa = λx : P .([],⊥,⊥)

where [] is the empty list and ⊥ is the bottom of the information ordering (no infor-

mation).

When we have an observation, say o1, we just need to update the list of observations

and so get the the new policy

πa = λx : P .([evd1],⊥,⊥)

In a situation when the returned trust value that we asked the trust engine for is not

enough, we might ask principal b for recommendation about c. Then our policy would

be updated to

πa = λx : P .([], [d0,d1],(x = c) 7→ update((τ1, ι1), [d0,d1])

where τ1 = τ((pbq(x).2),paq(c).2)) and ι1 = ι((pbq(x).2),paq(c).2)) determines the

attraction. The operator .2 (in general .n for any natural number) stands for the projec-

tion of the 2-nd element (in general n-th) over the tuple (over set T ). Hence every time

we update we keep the old value and add new references to other principals.

Notice that when getting an observation we just store it in the list but we do not

update the trust value. That is going to be done with a further update which basically

cleans the list and updates (with the function eval) the trust value in the middle of the

triple.

4 Conclusions and Further Work

The primary contribution of this paper is in formalizing a model for a trust-based de-

cision maker that incorporates four components: trust engine, risk evaluator, trust life-

cycle, and evidence repository. The model reflects on how important is to take the two

factors of trust in risk on board in establishing collaboration between principals. The

model showed that reaching decision is a prolonged process to remove some shade of

uncertainty issues concerning risk and principals’ trustworthiness.

A similar approach for trust management formalization is described in [3]. This

model also accommodates and correlates trust and risk in establishing interactions in

the context of e-services. In their proposed model, there is no formal definition of trust.

Alternatively, they described a classification of trust relationships in the environment

of e-commerce. It is also important to mention that subjective logic theory [8] , has

influenced our addressing of issues of uncertainty in our model.



There are a number of promising directions for further investigation. One of these

issues is how to introduce complexity in the model by considering more complex col-

laborations (i.e. a collaboration that takes place between more than two collaborators

to perform dependent actions). An interesting area of research is how to make a deci-

sion based on the relative context and time. This implies encoding these two notions

in the model. For the trust engine, one particular area of interest is to complement the

denotation model presented here with an operational model where, for instance, we will

need to address the question of computing trust information efficiently over the global

network.

Our future research will be focused on examining this model by developing a sim-

ulation framework. In this framework, we will study the properties of the proposed

model. The results of the simulation and the study of the current model properties will

guide us to more complex collaboration model. We hope to report on this work shortly.
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