
WebDocBall: A Graphical Visualization Tool for

Web Search Results

Jesús Vegas1, Pablo de la Fuente1, and Fabio Crestani2

1 Dpto. Informática
Universidad de Valladolid

Valladolid, Spain
{jvegas,pfuente}@infor.uva.es

2 Dept. Computer and Information Sciences
University of Strathclyde
Glasgow, Scotland, UK

F.Crestani@cis.strath.ac.uk

Abstract In the Web search process people often think that the hard-
est work is done by the search engines or by the directories which are
entrusted with finding the Web pages. While this is partially true, a not
less important part of the work is done by the user, who has to decide
which page is relevant from the huge set of retrieved pages. In this paper
we present a graphical visualisation tool aimed at helping users to de-
termine the relevance of a Web page with respect to its structure. Such
tool can help the user in the often tedious task of deciding which page
is relevant enough to deserve a visit.

1 Introduction

Searching the Web is one of the most frequent tasks nowadays. Unfortunately,
it is often also one of the most frustrating tasks. The user gets little help from a
Web search engines or a Web directories. The former lacks precision, while the
scope of the latter is often too small. The only tool the user has to initiate the
search is usually just a small set of query terms and, after the query process,
the user is left with a huge amount of information to process manually. While
much work has been devoted to design and develop algorithms to improve the
query process, little has been done to help the users to find the needle in this
“document stack”. In the remainder of this paper we will use the terms We page
and document interchangeably.

According to Shneiderman, the search process can be divided in four
phases [15]:

1. formulation: the information need is expressed in the query.
2. search: the query is submitted to the search engine and is processed.
3. reviewing of the results: the retrieved document set obtained is reviewed by

the user.
4. refinement: the query is reformulated in a manual or semi-automatic way to

try to improve the retrieval results.

The third phase is where information visualisation can help the user improve
the effectiveness of the manual task of browsing the results set. In this phase,
the user has to identify a relevance relation between the query he formulated
and the results obtained. Usually, the user sees a list of URLs and titles of
documents with little more information about them, so this task is hard and
tedious and, frequently, the user has to wait several seconds to see that a page is
not interesting. It is clear that this is the phase where the user needs assistance
to identify potentially relevant documents and discard those that are not useful.
This phase is very important, since it has a major impact on the user satisfaction
with a system.

The areas of interest in this phase are three [12]: set level, site level and
document level.

At the set level the objective is to represent the entire set of results. Several
techniques has been developed, such as, for example, scatter-plots and star-
fields [1], maps or landscapes metaphors [5], wall metaphor [11], or cone trees [13].

The Web site level tries to locate the retrieved documents in the Web site
structure, since the user could be interested in Web sites, not just Web pages.
It also tries to tackle the “lost in hyperspace” problem [10].

At the document level, the objective is to help the user to decide if one page
is relevant to his/her information need or not. Our work is directed at this level.
For this task, we propose a graphical tool to assist the user in the review phase.
The visualisation tool displays to the user the structure of the HTML document
and the estimated relevance of its parts with respect the query. The tool is based
on two assumptions: pages have a hierarchical structure, and the result set can
be post-processed. Both assumptions can be easily satisfied.

The paper is structured as follows. In Section 2 we review related work,
concentrating on visualisation tools used at document level. In Section 3 we
introduce a new tool for the visualisation of retrieved documents in Web searches.
In addition, we compare our proposal with related work. A description of a Web
search engine that incorporated the visualisation tool is reported in Section 4.
Finally, Section 5 reports our initial conclusions and provides an outline of future
work.

2 Information Visualisation Tools at the Document Level

The document level is the one in which the user analyse the answers obtained
from a Web search engine. Here, a large number of pages (the actual number
can vary from one to thousands) are presented to the user, who has the hard
task of identifying those relevant to his/her information need. Usually, the user
is provided with little help for this task. The most important tools designed for
this tasks are Tilebars [9], relevance curves [14] and the thumbnail view [4].

Before we present and compare about these three tools, we need a framework
for comparison. In order to build it, we need to answer the following question:
what does the user need when he is browsing at the document level a result set
obtained from a Web query? An established answer, to which we fully subscribe,

is that the user not only needs to know about the relevance of a document, but
also “where” the document is relevant.

The vast majority of documents that are available on the Web have some
hierarchical structure [2], which can either be explicit, like in XML documents,
or implicit, like in HTML documents. We argue that the user could get very
quickly an idea of the actual relevance of a document by looking at the way the
parts estimated to be relevant are distributed in it. In addition, the user can be
interested not only about the concentration of relevant parts, but in what are
the hierarchical relations among them. Another important information about
the retrieved document is its type. This can be inferred from the structure of
the document. The user could be more interested in a document with a very flat
structure, than in one with a more deep structured. Another important aspect
of the retrieved documents is its size. A short letter and an extend technical
report are clearly not the same.

So, there are three aspects that can help the user analyse the results of
a Web search at document level: the relevance the document and how this is
distributed on the document parts, the structure of the document, and the size
of the document.

a) Tilebars b) Relevance Curves c) Thumbnails

Figure 1. Tilebars, Relevance Curves and Thumbnails.

Figure 1 shows document representations using Tilebars, relevance curves
and thumbnail. The first two representations show the relevance of each passage
or segment of the text, using a row for each query term. The size of the docu-
ments is represented by the Tilebars or the relevance curve size. The passages
can correspond to paragraphs or sections, or units of fixed arbitrary length. Both
Tilebars and relevance curves show whether and where the document is relevant.
However, the use of the structure is only done in a linear way, being it impossi-
ble to appreciate the hierarchical relations between the structure elements found
in the document. The third document representation is the thumbnail. In this
case no information about the size or the structure of the document is provided.
The only information represented is related to the appearance of the document.
Therefore, a thumbnail representation can complement the two first representa-

tions and it is useful when the user works frequently with the same document
set and can recognise a document by its thumbnail view. The only information
about the structure that the user can obtain from this representation is the in-
formation that can be inferred from the appearance of the different elements
in the document, and this is not enough, since the user also needs information
about the relevance of the different parts of the document.

3 The Webdocball

In this paper we present a visual metaphor that can explain the user why a
Web document was retrieved by a Web search engine, by showing where in
the structure of the document estimated relevance lies. We call this metaphor
Webdocball, in analogy to the Docball metaphor presented in [16], of which it
is an extension in the Web domain. This visualisation element is included in a
prototype system that works on top of a Web search engine by post-processing
the results obtained from the search engine to allow the user to browse the
result set using different representations of the documents. Figure 2 shows the
Webdocball representation of a Web document.

first level

last level

no relevant

few relevant

relevant

very relevant

whole document

Figure 2. The Webdocball metaphor.

In the Webdocball, each ring represents a level of the hierarchical structure
of the document, where the centre represents the entire document. In a ring, the
regions represent the structural elements in that level. Inside a ring elements are
presented in a clockwise order.

Each region in the Webdocball is coloured with regard to its estimated rel-
evance: a hotter colour indicates more relevance, a colder colour represents less
relevance. White regions have been estimated to be not relevant.

Regions are ”clickable”, so that the Webdocball can be used as a navigation
tool of the Web document.

The Webdocball representation can be considered as the representation of
a tree structure, which depends on two parameters: the number of elements in
the deeper structural level (the number of leaves) and the number of structural
levels in the document (the height of the tree).

A Web document with a large number of elements will have very narrow
regions in the corresponding rings. The regions corresponding to leaves are rep-
resented from their level ring to the exterior ring. In addition, in order to enable
a clear representation of Web documents with many levels, the height of the
rings decreases the deeper the structural level it represents. This feature was
not present in the Docball representation. Such feature can be seen in Figure 3,
where different Webdocball are shown with respect to the number of leaves and
structural levels of the document represented. The Webdocball (a) represents a
Web document with a deep structural hierarchy, whereas the document repre-
sented by the Webdocball (b) is more flat with respect the its structure, but has
a larger number of leaves.

a) b)

Figure 3. Different Webdocballs representing different structures of Web documents.

3.1 Comparing Webdocball and Tilebars Representations

In this section, we compare the Webdocball and the Tilebars representations. We
do not consider relevance curves because they can be considered just a version
of Tilebars. Also, we do not consider Thumbnails because they do not represent
structural information.

A Webdocball exploits the structure of the documents to show the estimated
relevance of the documents, in a similar way to Tilebars, but it goes one step
beyond Tilebars. In Tilebars the structure is represented in a linear way, and it is
impossible to extract the hierarchical relations between the structural elements
as it can be done in the Webdocball representation. So, a Webdocball allows

to visualise the structural complexity of the retrieved documents. However, it
should be recognised that Tilebars enable the representation of the length of the
document, something that is not possible in the Webdocball representation.

Another difference is that in Tilebars, the relevance of each single query term
is displayed, whereas a Webdocball represents the relevance of all the query
terms. In the case of few query terms Tilebars can be better that Webdocballs.
However, in the case of many query terms, Webdocballs are clearly better. In fact,
Tilebars cannot manage query expansion by relevance feedback process, where
many query terms are often added to the query. In such case, Webdocballs are
more useful, since the relevance representation is independent of the number of
query terms.

4 A Description of the Webdocball System

The Webdocball visualisation tool is part of a prototype Web search engine we
have developed on top of an existing search engine. The prototype is written in
Java and the Webdocball visualisation tool has been developed using the SVG
(Scalable Vector Graphics) standard [6]. The Web search engine is built on top
of Google using the Google Web APIs1. Google uses the SOAP (Simple Object
Access Protocol) [8] and the WSDL (Web Services Description Language) [7]
standards, enabling us to use Java for the prototype development.

Since a Webdocball represents the estimated relevance of a Web document at
each structural level, we need to be able to determine the structure of the Web
document, and to estimate the relevance of each structural element with respect
to the query. To achieve this, we need to post-process the results set obtained
from Google to obtain the information needed to draw the Webdocball. All of
this can be seen in the diagrammatic system architecture shown in Figure 4.

index

result set

Web search
engine

WWW

web doc

query

?

webdocball
user

+

Figure 4. Architecture of the Webdocball system.

1 Google Web APIs are a free beta service and are available for non-commercial use
only at http://www.google.com/apis

The query process is the usual one: the system enables the user to submit
a natural language query, which is processed by Google. The search results are
presented to the user as a list of Web documents with associated Webdocball
representations. An example of result list is presented in Figure 5.

Figure 5. Results in the Webdocball system.

In the result list each document is presented with its KWIC (Key Word in
Context), the link to the site where is the document, and the correspondent
Webdocball. The Webdocball is connected with a post-processed form of the
original Web document which is stored in a local cache. The Webdocball is then
a simplified version of the Web document that shows to the user information
related to the document structure, which is coloured in relation to the estimated
relevance degree of each element. From this post-processed document, the user
can visit the original one, either by accessing the system cache or by going to
the real Web page following the link.

In the next sections, we are going to explain the two most interesting phases
of the process of construction of a Webdocball representation: the document
structure extraction and estimation of relevance of each structural element of
the document.

4.1 Extracting the Structure of a Web Document

Documents on the Web are of many different types, but mostly they are HTML
documents [2], although XML, PDF and other types of documents can also be
found. As explained in the previous section, in order to construct a Webdocball
we need to determine the structure of Web documents. To obtain this from XML
documents is very easy, since the document structure is expressed explicitly. Un-
fortunately, the number of XML documents available on the Web is very limited,
and most documents are in HTML, so we have to extract structural informa-
tion from HTML labels. We found several problems in this process, the main
two being that HTML labels are used with no discipline by the Web documents
authors, and that the HTML labels express structural information in an im-
plicit way. Therefore we need to answer these two questions: which are the most
common HTML labels in the Web and what are their structural significance.

To answer these questions we build a random URL generator using the Google
search engine. We retrieved via Google, using a random set of words, 30,000
distinct HTML pages, comprising 13,124,339 HTML (labels). From an analysis
of the results we found that the most often used labels were, in decreasing order:
content, p-implied, td, br, tr, img, p, comment, table, span, li, script,
div. meta, input, title, center, hr, ul, body, html, head, form, link, select,
frame, object, and ol.

In addition, we obtained some important information about the structure of
HTML documents:

– The average number of structural levels in HTML documents is 10.66.
– Tables are widely used, with an average of 10 tables per page.
– The paragraph label (p) is used 13 times per page on average.
– The number of frames, forms and links per page is very low, less than 2, on

average.

From the previous label set, we have chosen to consider those labels that have
structural meaning, that is, labels used in Web documents to express hierarchical
relations. These were the following:

– tables: table, tr, and td.
– lists: ul, ol, and li

– paragraphs: p, and br.

We do not use the main structural level labels html, body and head because
there is only one of each per page and they do not add structural information
that could be used to discriminate between the retrieved documents.

To understand how a Web document is represented using a Webdocball
metaphor, let us consider the Web document shown in Figure 6, as it can be
viewed using the Netscape We page editor (the boxed labels represent the HTML
labels). This is a page of an introduction course in IR. The document is com-
posed by four tables (title, navigational tool, content, and foot). The tables are
used to organise the content in the Web page. The most interesting table is the

Figure 6. Example of Web document.

content one, because its left column is used to index the content in the right
column. In this right column, there are several HTML elements (paragraphs and
lists, mainly) with structural meaning. This structural information can be seen
in the Webdocball depicted in Figure 7.

4.2 Determining the Relevance of a Structural Element

In order to colour the Webdocball we need to estimate the relevance of each
structural element of the Web document with respect to the query. To do this
we use a modified version of the Vector Space Model (VSM). The original VSM
is not suitable to index Web documents, because it does not consider important
aspects of the Web like the hyperlinks and other information useful to index the
Web documents with success (see [3] for more information about indexing the
Web). However, it can still be very useful for our very specific purpose.

<p>

<td> <
ta

b
le

>

<table>

ble> ble>
<ta <ta

<td>

<p>

<td>

<td>

<td>

<td>

<td>

<td>

Figure 7. The Webdocball of the Web document in the Figure 6.

The model we propose considers a Web document as the collection of items
to index, where the elements of the document are the items to index. In a Web
document there are two types of elements, content (text) and structural elements
(labels). We can transform a Web document in a collection of items to index
in a two phase process: first each content element is indexed using the VSM,
then the indexing weight of the content elements are spread to the top of the
structural hierarchy (i.e. towards the centre of the Webdocball) as indicated by
the structural elements. This process is more formally explained in the following.

Let us assume that a Web documents d is composed of a hierarchy S of m

structural elements s, and can be viewed as d={s1, s2, . . ., sm}. Two structural
elements are related by an inclusion relation, si ⊂ sj when si is included in sj

according to the hierarchy S. The inclusion relation is called directed, denoted
by ⊂′, if 6 ∃sk / si ⊂ sk ⊂ sj . A structural element will be a leaf element when
there is no element included in it.

A structural element sj in a document will have a weight wi,j ≥ 0 with
respect to the index term ki calculated as follows:

wi,j =

freqi,j

maxlfrecl,j
× log m

mi
if sj is a leaf

∑

∀sl⊂
′sj

wi,l if sj is not a leaf

(1)

Therefore, as in the VSM, the weight vector of a structural element sj in the
document d is represented by sj = {w1,j , w2,j , . . . , wt,j}.

The similarity between the query vector and the structural elements vector
can be calculated using cosine correlation, as it is done in the standard VSM.

5 Conclusions and Future Work

We have presented a graphical tool for the visualisation of Web documents re-
trieved by a Web search. The proposed tool uses the structure of the Web docu-

ments to show the user where estimated relevance is located inside the document.
In addition, we have developed a prototype system, based on Google, that re-
trieves documents from the Web and uses a modified version of the Vector Space
Model to estimate the relevance of each structural element of Web documents
to a user query.

Currently, we are carrying out an evaluation of the visualisation tool. Pre-
liminary tests have been satisfactory with respect the appearance and utility of
the visual metaphor, as it was already found for the Docball metaphor [16]. The
most serious drawback, at this stage, is the answer time of the system, which it
is very high due to the amount of post-processing work needed to calculate and
to draw the Webdocball representation. We are currently working to reduce the
time necessary to do that.

The work presented in this paper is part of a wider work aimed at the design,
implementation, and evaluation of a complete system for Web retrieval. The next
step in this project will be to answer the question of where retrieved documents
are located in a Web site. We plan to use the same visual metaphor to represent
the search results at the set, site and document level, to help the user in the
Web searching process.

Acknowledgements

Large part of the implementation of the GUI has been carried out by Javier
López González, student at the University of Valladolid.

This work was partially supported by the Spanish CICYT program (project
TEL99-0335-C04).

References

1. C. Ahlberg and B. Shneiderman. Visual Information Seeking: Tight Coupling of
Dynamic Query Filters with Starfield Displays. In Human Factors in Computing
Systems. Conference Proceedings CHI’94, pages 313–317, 1994.

2. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-
Wesley, 1999.

3. S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search
Engine. Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

4. S.K. Card, G.G. Robertson, and W. York. The Webbook and the Web Forager: an
Information Workspace for the World Wide Web. In Proceedings of the Conference
on Human Factors in Computing Systems CHI’96, 1996.

5. M. Chalmers. Using a Landscape to Represent a Corpus of Documents. In
COSIT’93, 1993.

6. SVG Working Group. Scalable Vector Graphics (SVG) 1.1 Specification. Candidate
Recommendation, 2002. http://www.w3.org/TR/2002/CR-SVG11-20020430/.

7. Web Services Description Working Group. Web Services Description Language
(WSDL) Version 1.2. Working Draft. http://www.w3.org/TR/2002/WD-wsdl12-
20020709/.

8. XML Protocol Working Group. SOAP Version 1.2 Part 0: Primer. Working Draft.
http://www.w3.org/TR/2002/WD-soap12-part0-20020626/.

9. M.A. Hearst. Visualization of Term Distribution Information in Full Text Infor-
mation Access. In ACM SIGCHI Conference on Human Factors in Computing
Systems (CHI), 1995.

10. J. Lamping and R. Rao. Laying out and Visualizing Large Trees using a Hyperbolic
Space. In ACM Symposium on User Interface Software and Technology, pages 13–
14, 1994.

11. J.D. Mackinlay, G.G. Robertson, and S.K. Card. The Perspective Wall: Detail and
Context Smoothly Integrated. In CHI’91, pages 173–179, 1991.

12. T.M. Mann. Visualization of WWW Search Results. In DEXA Workshop, pages
264–268, 1999.

13. G. Robertson, J. Mackinlay, and S. Card. Cone trees: Animated 3d Visualiza-
tions of Hierarchical Information. In Conference on Human Factors in Computing
Systems CHI’91, pages 189–194, 1991.

14. Arisem S.A. http://www.arisem.com.
15. B. Shneiderman. Designing the User Interface. Strategies for Effective Human-

Computer Interaction. Addison-Wesley, 1992.
16. J. Vegas, P. de la Fuente, and F. Crestani. A Graphical User Interface for Struc-

tured Document Retrieval. In ECIR 02, BCS-IRSG European Colloquium in In-
formation Retrieval Research, pages 268–283, March 2002.

