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Abstract. In this paper a new method based on Utility and Decision
theory is presented to deal with structured documents. The aim of the
application of these methodologies is to refine a first ranking of structural
units, generated by means of an Information Retrieval Model based on
Bayesian Networks. Units are newly arranged in the new ranking by
combining their posterior probabilities, obtained in the first stage, with
the expected utility of retrieving them. The experimental work has been
developed using the Shakespeare structured collection and the results
show an improvement of the effectiveness of this new approach.

1 Introduction and Motivations

Information Retrieval (IR) systems are powerful and effective tools for accessing
documents by content [2]. A user specifies the required content using a query,
often consisting of a natural language expression. Documents estimated to be
relevant to the user information need expressed by the query are presented to the
user through an interface. New standards in document representation require IR
to design and implement models and tools to index, retrieve and present doc-
uments according to the given document structure. In fact, while standard IR
treats documents as they were atomic entities, modern IR needs to be able to
deal with more elaborate document representations, like for example documents
written in SGML or XML, for instance. These document representation for-
malisms enable to represent and describe documents said to be structured, that
is documents whose content is organised around a well defined structure that en-
ables to represent the semantics of complex and long documents [5]. Examples of
these documents are books and textbooks, scientific articles, technical manuals,
educational videos, news broadcast, etc. This means that documents should no
longer be considered as atomic entities, but as aggregates of interrelated seman-
tic objects that need to be indexed, retrieved, and presented both as a whole and



separately, in relation to the user’s needs. In other words, operationally, given
a query an IR system must retrieve the set of document components that are
most relevant to this query, not just entire documents. An example of a task
that required the identification of specific structural elements is the search of a
long educational video on Art Noveau for parts describing the work of Charles
Rennie Macintosh. In this case, is likely that the user is not interested in the en-
tire video or in the few frames in which Macintosh appears (identified by image
analysis or word spotting on the soundtrack), but on a set of video segments (the
user might not care if these are frames, scenes or large elements) which describe
the work of Macintosh. In structured document retrieval this is made possible
by searching with appropriate models the structured description of the video to
identify the structural elements that contain the information sought.

However, the above example enables to highlight one of the problems of
structured document retrieval that has not been well studied yet. Faced with a
query on Charles Rennie Macintosh, a structured document retrieval system will
retrieve from the educational video on Art Noveau only those structural elements
(frames, scenes, etc, depending on the indexing level used) that are found to be
relevant to the query. In modern IR this is achieved by ranking the structural
elements based on some model that uses the weights assigned to the word (or
words) “Charles Rennie Macintosh”. In this way structural elements assumed to
be “about” Macintosh because the query words appear in them will be ranked
at the top and presented first to the user. But this might not be the best way
to present the sought information to the user. In fact, using this approach the
user will only see the structural elements of the video that are found to be about
Charles Rennie Macintosh without their context.

Context is very important in structured document retrieval, but it has rarely
been studied. It is easy to recognise that the context in which some information
is presented is an integral component of the understanding of the information
itself. In the above example, it would be of little use to the user to present him
with a ranked list of frames found to be about Macintosh. Similarly, it would
be of little use to retrieve the entire video or large parts of it containing much
irrelevant information. What the user would like to see, we believe, is some
structural elements of the video that are about Macintosh, where information
about Macintosh is presented within some context, that is it is accompanied by
sufficient information to enable the user to fully understand what is conveyed
by the structural elements found to be relevant. This might require the retrieval
of larger structural elements of the video (e.g. scenes) containing a combination
of smaller structural elements (e.g. frames), some of which are highly relevant
and some others being retrieved only to provide the context for the information
contained in the relevant elements.

The above problem is very difficult for standard structured document re-
trieval and can only be tackled effectively using models that enable to fully rep-
resent the complex relationships present in a structured document among the
different structural elements that compose it. This is particularly true for hier-
archically structured documents where the inclusion relation between structural



elements can be considered together with the proximity relation (one section fol-
lowing or preceding another) and the semantic similarity relation (two sections
about the same topic) to fully capture the context.

Bayesian Networks (BN) are powerful tools to represent and quantify the
strength of relationships between objects. As such, they are also being applied
to structured document retrieval (see for example [13, 8, 14]). In [6] we proposed
a retrieval model for structured document retrieval based on a multi-layered BN
that is an extension of a previously developed model to manage standard (non-
structured) documents [1, 7]. However, though these models can tackle structured
document retrieval (with various degrees of success), they cannot tackle the
context problem explained above.

The overall objective of our work is to design a system that will enable to
retrieve from a collection of structured documents elements of varying structure
containing relevant information within some meaningful context, so that these
structural elements can be considered self-contained informative objects that can
be used on their own without reference to their documents of origin.

Until now, when the IR system decided to show a document, this decision was
independent on showing any other document from the collection. But now, with
structured documents, this is different because once it retrieves a piece of text,
it may affect the retrieval of some others. To put into practice this previous idea,
the best tool is Decision Theory [9], which is aimed to help making decisions, i.e.,
to choose an alternative among a set of them taking into account the possible
consequences. In the context of this paper, the problem is to determine those
parts of documents that will be shown to the users in response to a query, without
showing any redundancy: if section 1.3 is more relevant than the whole chapter
1, then the IR system should only give this section to the user. But if the chapter
contains more useful information, then the chapter is the text object returned
and not the section, although it is also interesting. Specifically, our approach
applies Utility Theory to solve this problem, i.e., the branch of Decision Theory
concerned with measurement and representation of preferences. By means of
Utility Functions, the preferences for the different decisions are described, and
with them the Expected Utility for each alternative is computed. The alternative
with the highest expected utility is considered the most preferable.

This paper is structured as follows. In section 2 we give some preliminaries
to rest of the paper, including the description of the BN model for structured
document retrieval. There, the assumptions that determine the network topol-
ogy are considered, together with the details about the probability distributions
stored in the network, and the way in which we can efficiently use the network
model for retrieval, by performing probabilistic inference. Section 3 presents how
decision theory can be used to capture the contextual relations between struc-
tural elements on the BN model. In Section 4 we report on some preliminary
experimental results obtained with the model, using a structured document test
collection [10]. Finally, Section 5 contains the concluding remarks and some di-
rections for future research.



2 Preliminaries

In this paper we present a model called SrideRB, which stands for Information

Retrieval System for Structured Documents based on Bayesian networks (trans-
lated from the original name in Spanish and Italian). This model is composed
of two parts: the retrieval model, which produces a ranking of all the structural
units included in the documents according to the degree of relevance with respect
a query, and a decision making model that will determine which units will be
returned to the user in order to capture the relevant information in its context.
The application of Decision Theory to Information Retrieval is a novel approach
to this problem, which has been approached already with other technologies [15].

This paper addresses the issues related to the modeling of the retrieval of
structured documents when the user does not explicitly specifies the structural
element requested. In standard IR retrievable units are fixed, so only entire
documents constitute retrievable units. The structure of documents, often quite
complex, is therefore “flattened” and not exploited. Classical retrieval methods
lack the possibility to interactively determine the size and the type of retriev-
able units that best suit an actual retrieval task or user preferences. Some IR
researchers are aiming at developing retrieval models that dynamically return
document components of varying complexity. A retrieval result may then con-
sist of several entry points to a same document, corresponding to structural
elements, whereby each entry point is weighted according to how it satisfies the
query. Models proposed so far exploit the content and the structure of docu-
ments to estimate the relevance of document components to queries, based on
the aggregation of the estimated relevance of their related components. These
models have been based on various theories, like for example fuzzy logic [4],
Dempster-Shafer’s theory of evidence [12], probabilistic logic [3], and Bayesian
inference [13]. A somewhat different approach has been presented in [15], where
evidence associated with the document structure is made explicit by introducing
an “accessibility” dimension. This dimension measures the strength of the struc-
tural relationship between document components: the stronger the relationship,
the more impact has the content of a component in describing the content of its
related components. Our approach is based on a similar view of structured doc-
ument retrieval. In fact, we use a BN to model the relations between structural
elements of documents. A BN is a very powerful tool to capture these relations,
with particular regards to hierarchically structured document. The next subsec-
tion contains a detailed presentation of our approach.

2.1 A Multilayered Bayesian Network Model for Structured

Document Retrieval

Given a document collection composed of N documents, D = {D1, . . . , DN},
and the set T = {T1, . . . , TM} of the M terms used to index these documents
(the glossary of the collection), A(Di) will denote the subset of terms in T that
are used to index the document Di.



We shall assume that each document is composed of a hierarchical structure
of l abstraction levels L1, . . . ,Lℓ, each one representing a structural association of
elements in the text. For instance, chapters, sections, subsections and paragraphs
in the context of a general structured document collection, or scenes, shots, and
frames in MPEG-7 videos. The level in which the document itself is included
will be noted as level 1 (L1), and the more specific level as Lℓ.

Each level contains structural units, i.e., single elements as Chapter 4, Sub-
section 4.5, Shot 54, and so on. Each one of these structural units will be noted
as Ui,j , where i is the identifier of that unit in the level j. The number of
structural units contained in each level Lj is represented by |Lj |. Therefore,
Lj = {U1,j , . . . , U|Lj |,j}. The units are organised according to the actual struc-
ture of the document: Every unit Ui,j at level j, except the unit at level j = 1
(i.e., the complete document Di = Ui,1), is related to only one unit Uz(i,j),j−1 of
the lower level j − 11. As the text (the whole set of terms) associated to Ui,j is
part of the text associated to Uz(i,j),j−1, abusing of the notation, we shall note
this relation as Ui,j ⊆ Uz(i,j),j−1. Therefore, each structured document may be
represented as a tree (Figure 1 shows an example).

Level 1

Level 2

Level 3
U13 U23 U33 U43 U53

U22
U12

U11

Fig. 1. A structured document.

Each term Tk ∈ A(Di), originally indexing a document Di, will be assigned to
those units in level Lℓ containing it which are associated with Di. Therefore, only
the units in level Lℓ will be indexed, having associated several terms describing
their content (see Figure 2).

D1

T3 1 4 5 6 7 T3 T4 T1 T5 T7TT TTT2T1T

Level 1

Level 2

Level 3

T T2 T3 T1 T4 T5 T6 T7 T3 T4 T1 T5 T7

U53U43U33U13 U23

U12 U22

U11

1

Fig. 2. From an indexed document to an indexed structured document.

From a graphical point of view, our Bayesian network will contain two dif-
ferent types of nodes, those associated to structural units, and those related to

1 z(i, j) is a function that returns the index of the unit in level j − 1 where the unit
with index i in level j belongs to.



terms, so that V = T ∪ U , where U = ∪l
j=1Lj . Each node represents a binary

random variable: Ui,j takes its values in the set {u−
i,j , u

+
i,j}, representing that the

unit is not relevant and is relevant, respectively.2; Ti takes its values from the
set {t−i , t+i }, where in this case t−i stands for ‘the term Ti is not relevant’, and
t+i represents ‘the term Ti is relevant’3. To denote a generic, unspecified value of
a term variable Ti or a unit variable Ui,j , we will use lower-case letters, ti and
ui,j . Notice that we use the notation Ti (Ui,j , respectively) to refer to the term
(unit, respectively) and also to its associated variable and node.

The Bayesian network representing the structured collection has a graph
topology with l+1 layers, where the arcs go from term nodes to structural units
in level l, and from units in level j to units in level j − 1, j = 2, . . . , l. More
formally, the network is characterized by the following parent sets, Pa(.), for
each type of node:

– ∀Tk ∈ T , Pa(Tk) = ∅.
– ∀Ui,l ∈ Lℓ, Pa(Ui,l) = {Tk ∈ T |Ui,l is indexed by Tk}.
– ∀j = 1, . . . , l − 1, ∀Ui,j ∈ Lj , Pa(Ui,j) = {Uh,j+1 ∈ Lj+1 |Uh,j+1 ⊆ Ui,j}.

An example of this multi-layer BN is depicted in Figure 3, for l = 3.

U11 U21

U22

U13
U33 U53

U63

U32
U42

U23

U12

U73
U83 U93U43

... ...

... ...

... ...

... ...

T1T1T1T1 T3 T4 T5 T6 T7 T8T2 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

Fig. 3. Multi-layered Bayesian network for the BNR-SD model.

The following task is the assessment of the (conditional) probability distri-
butions:
• Term nodes Tk: they store the following marginal probabilities: p(t+i ) = 1

M

and p(t−i ) = M−1
M

.
• Structural units Ui,j : we have to assess p(ui,l|pa(Ui,l)) and p(ui,j |pa(Ui,j)),
j 6= l, where pa(U) denotes any configuration of Pa(U), i.e., any assignment of
values to all the variables in Pa(U). The following canonical model is considered:

p(u+
i,l|pa(Ui,l)) =

∑

Tk∈R(pa(Ui,l))

w(Tk, Ui,l) , (1)

2 A unit is relevant for a given query if it satisfies the user’s information need expressed
by means of this query.

3 A term is relevant in the sense that the user believes that this term will appear in
relevant documents.



p(u+
i,j |pa(Ui,j)) =

∑

Uh,j+1∈R(pa(Ui,j))

w(Uh,j+1, Ui,j) , (2)

where w(Tk, Ui,l) is a weight associated to each term Tk indexing the unit Ui,l,
w(Uh,j+1, Ui,j) is a weight measuring the importance of the unit Uh,j+1 within
Ui,j , with w(Tk, Ui,l) ≥ 0 and w(Uh,j+1, Ui,j) ≥ 0. In either case R(pa(U)) is
the subset of parents of U (terms for j = l, units in level j + 1 for j 6= l)
that are instantiated as relevant in the configuration pa(U), i.e., R(pa(Ui,l)) =
{Tk ∈ Pa(Ui,l) | t

+
k ∈ pa(Ui,l)} and R(pa(Ui,j)) = {Uh,j+1 ∈ Pa(Ui,j) |u

+
h,j+1 ∈

pa(Ui,j)}. So, the more parents of U are relevant the greater the probability of
relevance of U

Before defining the weights w(Tk, Ui,l) and w(Uh,j+1, Ui,j) in equations (1)
and (2), let us introduce some additional notation: for any unit Ui,j ∈ U , let
A(Ui,j) = {Tk ∈ T |Tk is an ancestor of Ui,j}, i.e., A(Ui,j) is the set of terms
that are included in the unit Ui,j

4. Let tfk,C be the frequency of the term Tk

(number of times that Tk occurs) in the set of terms C and idfk be the inverse

document frequency of Tk in the whole collection. We shall use the weighting
scheme ρ(Tk, C) = tfk,C · idfk. We define

∀Ui,l ∈ Lℓ, ∀Tk ∈ Pa(Ui,l), w(Tk, Ui,l) =
ρ(Tk, A(Ui,l))∑

Th∈A(Ui,l)
ρ(Th, A(Ui,l))

. (3)

∀j = 1, . . . , l − 1, ∀Ui,j ∈ Lj , ∀Uh,j+1 ∈ Pa(Ui,j),

w(Uh,j+1, Ui,j) =

∑
Tk∈A(Uh,j+1)

ρ(Tk,A(Uh,j+1))∑
Tk∈A(Ui,j)

ρ(Tk,A(Ui,j))

(4)

Observe that the weights in eq. (3) are only the classical tf-idf weights, nor-
malized to sum up one. The weights w(Uh,j+1, Ui,j) in eq. (4) measure, in some
sense, the proportion of the content of the unit Ui,j which can be attributed to
each one of its components.

The inference process that we have to carry out with this model is to obtain
a relevance value for each structural unit, given a query Q. Each term Ti in
the query Q is considered as an evidence for the propagation process, and its
value is fixed to t+i . Then, the propagation process is run, thus obtaining the
posterior probabilities of relevance of all the structural units, given that the
terms in the query are also relevant, p(u+

i,j |Q). Later, the documents are sorted
according to their corresponding probability and shown to the user. Although
this computation may be difficult in a general case, in our case all the conditional
probabilities have been assessed using a specific canonical model and only terms
nodes are instantiated (so that only a top-down inference is required). In this
context, the inference process can be carried out very efficiently, in the following
way:

4 Notice that, although a unit Ui,j in level j 6= l is not connected directly to any term,
it contains all the terms indexing structural units in level l that are included in Ui,j .
Notice also that A(Ui,l) = Pa(Ui,l).



– For the structural units in level Lℓ:

P (u+
i,l|Q) =

∑

Tk∈Pa(Ui,l)∩Q

w(Tk, Ui,l) +
1

M

∑

Tk∈Pa(Ui,l)\Q

w(Tk, Ui,l) . (5)

– For the structural units in level Lj , j 6= l:

P (u+
i,j |Q) =

∑

Uh,j+1∈Pa(Ui,j)

w(Uh,j+1, Ui,j) · p(u+
h,j+1|Q) . (6)

Therefore, we can compute the required probabilities on a level-by-level basis,
starting from level l and going down to level 1.

3 Document Re-Ranking using Utility Theory

Once the probability of relevance has been computed for each structural unit,
a ranking with all of them is generated. However, this ranking could show the
user redundant information. Let us suppose that the top of the list of units is
composed of the three subsections of a section from the same article, and the
fourth item is that section. In this case, the system should detect this situation
and decide to show either these three subsections or only the section, but not the
four units. The problem, therefore, is to make a decision about what to retrieve,
not only depending on the probability of relevance of the units but also in terms
of the usefulness of these units for the user. One way to put into practice that
idea is to use the Decision Theory, which would help making that decision which
maximises the Expected Utility.

In a first step to achieve this goal, instead of deciding what to show to the
user, i.e. to determine the Best Entry Points for a given query, the approach in
this paper will be to modify the relevance value associated to each structural
unit, taking into account the information involved in that decision. Taking up
again the previous example, and as a consequence of this new relevance value,
the section could change its position in the ranking overtaking its components.

The basis of the approach is the decision of retrieving (meaning showing it
directly to the user) a structural unit, Ui,j , or not. This will be represented by
introducing a decision variable, Ri,j , with possible values r+

i,j (retrieve Ui,j) and

r−i,j (do not retrieve Ui,j). The information that we shall use to make the decision
is the relevance value of the own unit Ui,j and that of the single unit, Uk,j−1,
containing it (the Ui,j ’s child in the network). An important element to make
the corresponding decision is a utility function, V (rij), which assigns a value of
utility to each possible decision ri,j .

In our problem, the utility function V (rij) may be represented by means of
a table that expresses the utility of making a decision, taking into account the
values that both random variables, Ui,j and Uk,j−1, could take. Therefore, for
each different combination of possible units’ values as well as decision’s values,
the values in table 1 express the corresponding user’s utilities:
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i,j u−

k,j−1
v(r+
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i,j , u
−

k,j−1
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i,j , u
−

k,j−1
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i,j u+

k,j−1
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−
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−
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) ≡ v−

−−

Table 1. Utility function V for the decision node Ri,j , with j 6= 1.

For instance, v(r+
i,j | u+

i,j , u
+
k,j−1) is a value that represents the utility of

showing unit Ui,j to the user once that it is known that this unit is relevant and
its child also is; v(r−i,j | u+

i,j , u
−
k,j−1) is the utility of not retrieving Ui,j when Ui,j is

relevant and Uk,j−1 is not, and so on. To simplify the notation, the utility values
will be noted as v with a + or − superscript depending on the semantic of the
decision, and two subscripts representing the meaning of the two unit variables.
We are assuming that the utility values are uniform, i.e., they do not depend on
the specific unit being considered, although this restriction is not necessary.

For the structural units in level 1, that are not contained in any other, the
utility function is expressed with a different table because the decision of retriev-
ing it only depends on itself. In this case, the table is composed of two rows, one
for each value that this variable may take, and two columns, representing the two
possible decisions, as may be noticed in table 2. The same notation as previously
explained, but only with one subscript, is used for values in that table.

r+

i,1 r−i,1

u+

i,1 v(r+

i,1 | u+

i,1) ≡ v+

+ v(r−i,1 | u+

i,1) ≡ v−

+

u−

i,1 v(r+

i,1 | u−

i,1) ≡ v+

−

v(r−i,1 | u−

i,1) ≡ v−

−

Table 2. Utility function V for the structural units in level j = 1.

The Expected Utility of retrieving a structural unit Ui,j in level j 6= 1, given
the query submitted to the IR system is computed according to the following
expression:

EU(r+
i,j | Q) =

∑

ui,j ∈ {u+
ij , u

−
ij}

uk,j−1 ∈ {u+
k,j−1, u

−
k,j−1}

v(r+
i,j | ui,j , uk,j−1) · p(ui,j , uk,j−1 | Q)

(7)
Alternatively, the expected utility of not retrieving this same unit is the

following:

EU(r−i,j | Q) =
∑

ui,j ∈ {u+
ij , u

−
ij}

uk,j−1 ∈ {u+
k,j−1, u

−
k,j−1}

v(r−i,j | ui,j , uk,j−1) · p(ui,j , uk,j−1 | Q)

(8)
Analogously, the two expected utilities for units in level 1 are the following:



EU(r+
i,1 | Q) =

∑
ui,1∈{u+

i,1
,u−

i,1
} v(r+

i,1 | ui,1) · p(ui,1 | Q)

EU(r−i,1 | Q) =
∑

ui,1∈{u+
i,1

,u−

i,1
} v(r−i,1 | ui,1) · p(ui,1 | Q)

(9)

From a computational point of view, obtaining the joint probability of a struc-
tural unit and its child conditioned to the query, i.e., p(ui,j , uk,j−1 | Q), may be
a time consuming process, because of the great amount of calculations required
on retrieval time. Taking into account this drawback, in this paper and as a first
stage to cope with the problem, it has been considered the simplifying assump-
tion that both units are conditionally independent given the query. Therefore,
this probability distribution is computed applying the following expression:

p(ui,j , uk,j−1 | Q) = p(ui,j | Q) · p(uk,j−1 | Q) (10)

4 Experimentation

The model has been tested using a collection of structured documents, marked up
in XML, containing 37 William Shakespeare’s plays [10]. A play has been consid-
ered structured in acts, scenes and speeches (so that l = 4), and may contain also
epilogues and prologues. Speeches have been the only structural units indexed
using Lemur Retrieval Toolkit (available at http://www-2.cs.cmu.edu/˜lemur/).
The total number of unique terms contained in these units is 14019, and the to-
tal number of structural units taken into account is 32022. With respect to the
queries, the collection is distributed with 43 queries, with their corresponding rel-
evance judgments. From these 43 queries, the 35 which are content-only queries
were selected for our experiments. The system evaluation has been carried out
using the average precision for the eleven standard recall values.

The experimental design carried out with this model tries to determine the
contribution of the use of the expected utility on the final ranking of structural
units. Therefore, once the first stage in which the posterior probability of each
structural unit, p(u+

i,j | Q), has been computed, the second stage obtains the
expected utility of each variable, combining these posterior probabilities and the
utility function, achieving finally a second ranking.

With respect to the values contained in tables 1 and 2, and before giving
values to them, it seemed to us interesting to sort them according to the utility
of each value for the user. Therefore, the following ordering has been obtained
using a small previous experimentation in which three users were asked to sort
the values according to what they think it was more useful. All of them agreed
in this ordering, being the one that has been applied in the first experiments:

v−
+− ≤ v+

−− ≤ v+
−+ ≤ v+

++ ≤ v−
++ ≤ v−−+ ≤ v−

−− ≤ v+
+− (11)

From there, we could say that, for instance, to show to a user a non-relevant
section in a relevant chapter (v+

−+) is less useful than retrieving a relevant section
in a relevant chapter (v+

++), which in turns is less useful than not to present a
relevant section within a relevant chapter (v−++, because in this case we would



prefer to present the complete chapter and not the section). The less useful
decision would be not to show a relevant section in a non-relevant chapter (v+−),
because we would definitively lose relevant information (note that the chapter
would not be presented either, since it also is not relevant). The most useful
decision is to retrieve a relevant section in a non-relevant chapter (v+

+−). As the
utility function is usually normalised in the interval [0.0, 1.0], then the limits
have been assigned to v−+− = 0.0, and v+

+− = 1.0.

In the context of a usual decision problem, once the expected utilities have
been calculated, we make the decision with greatest expected utility. In our case
this would mean, for each structural unit Ui,j , to retrieve Ui,j if EU(r+

i,j | Q) ≥

EU(r−i,j | Q) and not to retrieve Ui,j otherwise. However, we do not only wish to
decide what units to retrieve but also to give a ranking of these units. Therefore,
a second important design aspect is what technique we have to use to sort these
units. The first natural approach is to rank them according to the expected utility
of showing a unit, EU(r+

ij | Q). But there are two more natural options that also

involve the expected utility of not showing the corresponding unit, EU(r−ij | Q):

the quotient between both expected utilities, EU(r+
i,j | Q)/EU(r−i,j | Q) and the

difference EU(r+
i,j | Q)−EU(r−i,j | Q). These measures will be generically called

Re-ranking Utility Measures (RUM) and denoted, respectively, RUM-u, RUM-q
and RUM-d.

Therefore, the behaviour of this utility model depends on the utility function
applied, as well as the expression of the expected utility used to rank the struc-
tural units. The aim of this experimentation has been to determine, if possible,
a pattern that guarantees a good performance, by varying these two parameters.

All the re-ranking experiments with utilities are carried out using the same
initial ranking of all the previously cited structural units from the test collection,
obtained after performing the inference process described in subsection 2.1. The
average precision for the 11 standard recall points of this running is 0.0653 [6].

Ex. Measure v−

+−

v+

−−

v+

−+ v+

++ v−

++ v−

−+ v−

−−

v+

+−

AVP-11 %C

1 RUM-u 0.0 0.1 0.2 0.3 0.6 0.7 0.9 1.0 0.0674 3.21%

2 RUM-q 0.0 0.1 0.2 0.3 0.6 0.7 0.9 1.0 0.0684 4.75%

3 RUM-d 0.0 0.1 0.2 0.3 0.6 0.7 0.9 1.0 0.0687 5.20%

4 RUM-u 0.0 0.0 0.955 0.960 1.0 1.0 1.0 1.0 0.0735 12.57%

5 RUM-q 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0726 11.17 %

6 RUM-d 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0705 7.96%

7 RUM-u 0.0 0.0 0.955 0.960 1.0 1.0 1.0 1.0 0.0735 12.57%

8 RUM-q 0.0 0.0 1.0 1.0 0.5 0.0 0.4 1.0 0.0740 13.32 %

9 RUM-d 0.0 0.0 0.85 1.0 0.05 0.0 1.0 1.0 0.0733 12.25%

Table 3. Summary of experimental results.



Table 3 shows some representative experiments numbered in the first col-
umn (Ex.), from the great amount of tests run. In it, the measure to re-rank
documents (RUM), the different utility values, as well as the average precision
(AVP-11) and its corresponding percentage of change with respect to the baseline
(%C) are included.

In the first three experiments we used an increasing series of utility values
according to eq. (11) with the three different RUM measures. It’s noticeable a
slight improvement in the performance of the system, fact that lead us to look for
better combinations of utility values. By means of an intensive experimentation,
where we tried many utility values, all of them satisfying the ordering restrictions
imposed by eq. (11), the best results found correspond with the three next rows
in table 3.

Our next objective concerned with the ordering of the utilities suggested by
the users: Is the users’ supposition correct? Could other different combinations
of utility values that do not verify the ordering restriction obtain good or even
better average precision? To find the answer other series of experiments were
run, but in this case without imposing any ordering restriction. The best values
obtained are shown in the last three rows of table 3.

Studying the results and the different combinations of utility values in all the
experiments, it could be noted that the best performance for RUM-u is obtained
when the utilities involved in the expected utility of retrieving a unit are sorted
increasingly (v+

−− ≤ v+
−+ ≤ v+

++ ≤ v+
+−), and are close to 1.0, except the first,

which is not useful at all. The rest of utility values are not taken into account
by RUM-u, and therefore their values do not matter. This behaviour of RUM-
u seems to point toward a conservative strategy (probably recall-enhancing),
where it is very useful to retrieve a relevant unit irrespective of the relevance
of its context (v+

++ and v+
+− values) and it is also quite useful to retrieve non-

relevant units if their context is relevant (v+
−+ value).

The other two RUM measures, RUM-q and RUM-d, also exhibit the same
pattern for the utility values of retrieving a unit. Now, if we focus our attention
on the other values, corresponding to the utilities of not retrieving units, v−++,
v−−+ and v−

−− (v−+− is always set to 0) for RUM-d and RUM-q, data usually
shows crossed values for v−++ and v−−−. When in RUM-q the former is greater
than the latter, in RUM-d the opposite situation occurs. Moreover, in RUM-q
both values tend to be quite similar, whereas in RUM-d they are usually close
to the extremes, i.e., v−

++ ≃ 0.0 and v−
−− ≃ 1.0. A surprising fact is that for

both RUM measures, the utility of not retrieving a unit which is not relevant,
contained in a relevant one, v−

−+, is null, when our first hypothesis considered
that it should be a rather high number.

Summing up, a good pattern when the RUM-u measure is being used is to
follow the ordering in eq. (11), with high values for those utility values involved
in the expected utility of retrieving a unit, except v+

−− that is assigned to 0.0. For
RUM-q and RUM-d, it is more or less the same pattern for those utility values,
and for those which are used in the computation of the expected utility of not
retrieving a unit, v−

−+ should be very low, almost 0.0. v−++ and v−−− should be very



similar and around 0.5 for RUM-q and extreme for RUM-d. In all these cases,
the performance improvement with respect to the baseline ranking obtained by
using only the posterior probabilities of relevance computed from the Bayesian
network, is above 12%5.

5 Conclusions

This paper is framed as a first approach to solve a decision making problem,
in which the IR system has to decide whether to retrieve or not a structural
unit from a structured document collection, given a query submitted by a user.
Instead of making this decision, this work presents a new way of re-ranking the
structural units according to the expected utility of showing each unit, or by
means of a variation in which the expected utility of not retrieving the corre-
sponding unit is also involved.

Taking into account the experimental collection used to test the model, its
performance could be described as rather good although could be clearly im-
proved. The utility theory applied to re-rank structured documents seems to be
promising. The main purpose of the experimentation has been to find patterns
for the utility functions that present a good performance with the different RUM
measures.

Of course we are conscious that the conclusions of this experimentation are
completely related to the collection with which it has been carried out, and
specially the relevance judgments, being able to change if the test bed is different.
As a future work, the BN model with the utility module will be applied to other
structured collections, as INEX, to test if the same patterns of utility are fulfilled.

To improve the results, one action to be taken could be to remove the sim-
plifying assumption about the independence of a unit and the unit where it
is included, given the query (eq. 10). To put it into practice, the probabili-
ties p(uij , ukj−1 | Q) have to be computed, preferably in an exact and efficient
way. With this assumption, the utility model could be completely represented
by means of an influence diagram [16], providing a clear semantics and a solid
frame.

Only one utility function has been considered for all the layers in the model,
although another approach could be to use a different one for each type of
structural unit or layer, thus giving the possibility of assigning particularised
utility values to them, modeling user’s preferences.

The next stage is to use the model to determine the best entry points for a
query. This task means to put into practice the whole decision making process,
determining what to show to the user, and not only providing a ranking as it
has been done in this paper.

Regarding the Bayesian network topology, other tasks to be done are to repre-
sent the specific textual information assigned to structural units in levels different

5 We have not carried out a comparison of our results with other systems. The reason
is that we only are aware of a paper containing empirical results with the same test
collection [11], and there the results are obtained from a (unknown) subset containing
only 25 queries from the 35 Shakespeare collection’s content-only queries.



from l (for example the title of a chapter or a section) and to allow direct relation-
ships between units in non-consecutive levels of the hierarchy (e.g. paragraphs
and chapters). Also, to permit our model to deal, not only with content-only
queries, but also with structure-only and content-and-structure queries and let
the queries to include, in addition to terms, also structural units.
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