Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Three-parameter active in situ optical measurements: theory, instrumentation, and results from coastal waters

McKee, D. and Cunningham, A. and Jones, K. (2002) Three-parameter active in situ optical measurements: theory, instrumentation, and results from coastal waters. Journal of Optics A: Pure and Applied Optics, 4 (4). S66-S70. ISSN 1464-4258

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A submersible optical instrument has been designed and constructed which simultaneously measures chlorophyll fluorescence, beam attenuation and wide-angle light scattering in sea water. A theoretical framework is presented which shows that this instrument configuration is capable of quantitatively measuring concentrations of gelbstoff, suspended particles and phytoplankton when all three components are present in a mixture, provided the relevant set of calibration coefficients are known. The inherent variability of natural materials means that the numerical values of these calibration coefficients usually have to be determined at the site of instrument deployment. However, trials in optically complex waters indicate that the instrument can be usefully employed to interpolate between chemical measurements in order to increase the spatial and temporal coverage of survey data while minimizing the resources required for sample analysis.