Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Improved functional simulation of dynamically reconfigurable logic

Robertson, I. and Irvine, J. and Lysaght, P. and Robinson, D. (2002) Improved functional simulation of dynamically reconfigurable logic. In: Field-Programmable Logic and Applications: Reconfigurable Computing Is Going Mainstream. Lecture Notes in Computer Science, 2438 . Springer, pp. 152-161. ISBN 978-3-540-44108-3

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Several techniques to simulate dynamically reconfigurable logic (DRL) have been published during the last decade. These methods each have their own strengths and weaknesses, and perform well when used under particular circumstances. This paper introduces a revised version of dynamic circuit switching (DCS), a DRL simulation technique reported previously, which improves the accuracy of the simulation models and extends the range of situations to which they can be applied. The internal state of dynamic tasks that contain memory elements can change when they are reconfigured. Modelling this presents a further simulation requirement. The paper indicates how this can be achieved by including the ideas behind another simulation technique, clock morphing, in the methodology. Finally, the run-time overheads introduced by the technique are analysed.